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Chapitre 1

Introduction

1.1 Le théoréeme des nombres premiers

Le sujet principal de ce cours sont les nombres premiers, qui sont les nombres naturels
qui admettent exactement deux diviseurs distincts positifs. Leur importance extraordi-
naire est due au fait qu’ils forment, dans un certain sens, les briques élémentaires de la
structure multiplicative des nombres naturels.

Théoréeme 1.1 (Théoréme fondamental de I'arithmétique). Tout nombre naturel sécrit
comme un produit de nombres premiers d’'une facon unique, a Uordre preés des facteurs.

Une question qui se pose trés naturellement est la suivanta : combien de nombres pre-
miers existe-t-il? La réponse a cette question était déja connue dans l'antiquité grecque.

Théoreme 1.2 (Euclide). Il existe un nombre infini de nombres premiers.

Preuve. Supposons par 'absurde qu'’il existe un nombre fini de nombres premiers p, ..., p,-
Mais alors aucun de ces nombres premiers ne divise le nombre p, - -+ p, + 1. Il faut que ce
nombre soit divisé par un nombre premier différent, ce qui contredit notre hypothése. [

En vue de ce résultat, spécifions la question précédente comme suit : comment sont
distribués les nombres premiers ? Au premier abord, si on regarde par exemple le début
de la suite des nombres premiers, ils semblent étre distribués de facon complétement
aléatoire :

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, ...

Néanmoins, on peut se demander s'il existe une loi de nature plutdt statistique, qui décrit
la répartition des nombres premiers.

Une facon d’étudier cette question est de considérer la fonction 7(x), qui compte le
nombre des nombres premier inférieurs ou égaux a un réel x :

1t(x) := #{p < x : p un nombre premier}

Alors, quelle est une bonne approximation de 7t(x) ? Et quel est son comportement asymp-
totique quand x — co ?

Si on regarde 7t(x) pour quelques valeurs larges de x, on finit par avoir I'impression que
la densité des nombres premiers décroit de plus en plus lorsqu’on s’éloigne de 1. Vers la fin
du XVlIIe siecle, A.-M. Legendre et, indépendamment, C. E Gau® donnaient des formes



x n(x) | m(x)/x
1000 168 | 0,168
2000 303 | 0,1515
5000 669 | 0,1338
10000 1229 | 0,1229
20000 2262 | 0,1131
50000 5133 | 0,10266
100000 9592 | 0,09592
200000 | 17984 | 0,08992
500000 | 41538 | 0,083076
1000000 | 78498 | 0,078498

TABLE 1.1 — Quelques valeurs de 7t(x) jusqu’a x = 1000000

précises a cette observation en formulant la conjecture suivante pour le comportement
asymptotique de 7(x) :
im —n(x) = (1.1)
x—oo x/logx
Néanmoins, aucun de ces deux mathématiciens ne fut capable de produire une preuve de
cette conjecture.

Les premieres avancées sur cette question vinrent d’'une direction plutét inattendue et
concernaient initialement un probléme assez different. Etant donnés des entiers a et q >
1, on peut se poser la question : au vu de I'infinité des nombres premiers, existe-t-il aussi
une infinité de nombres premiers dans la progression arithmétique

a,a+q,a+2q,a+3q,a+4q,....

Clairement, il est nécessaire de supposer que a et g sont premiers entre eux pour que cela
soit le cas. Mais a condition que ceci soit satisfait, on pourrait attendre, au vu de la répar-
tition apparament aléatoire des nombres premiers, que toute progression arithmétique en
contient un nombre illimité.

Bien qu’on puisse montrer ce fait pour quelques cas spéciaux par des méthodes élémen-
taires (par exemple si ¢ = 4), le cas général se révéle fortement plus difficile a prouver.
C’est finalement le mathématicien P G. L. Dirichlet en 1841 qui put résoudre le probleme
en toute généralité.

Théoréme 1.3 (Théoréme de la progression arithmétique). Soient a et ¢ = 1 des entiers
premiers entre eux. Alors il existe une infinité de nombre premiers qui sont congrus d a
modulo gq.

En montrant ce résultat Dirichlet introduisit une multitude d’idées nouvelles, qui se
réverent tres influentes dans les années et decennies a venir, notamment aussi au regard
de I'étude de la répartition des nombres premiers.

Plus d’un demi-siecle aprées les premiéres conjectures autour de la fonction 7(x), P L.
Tchebychev établit en 1852 entre autres le théoréme suivant, que 'on peut voir comme
un premier pas en direction d’un preuve de la conjecture (8.7).

Théoréme 1.4 (Tchebychev). Il existe des constantes ¢, > ¢, > O telles que pour tout x
suffisamment large,

<n(x)<c,

x
c .
'logx log x



En fait, il montra cette inegalité en donnant les valeurs explicites ¢c; = 0,92129 et ¢, =
1,10555. Méme si ses méthodes étaient encore loin de produire une formule asymptotique
pour 7t(x), ce résultat confirma toutefois que I'ordre de grandeur conjecturé était correct.

La situation changea radicalement quelques années plus tard en 1859, quand B. Rie-
mann publia son article célébre Ueber die Anzahl der Primzahlen unter einer gegebenen
Grb’sse[ﬂ Dans ce papier de huit pages (le seul qu'’il ait jamais publié sur la théorie des
nombres) il considére une certaine fonction complexe {(s), la fonction zéta de Riemann
comme elle est connue de nos jours, et il montre comment les propriétés de cette fonc-
tion sont liées étroitement avec la répartition des nombres premiers. Bien qu’il n’était pas
capable de donner des preuves pour les énoncés les plus importants de son article, ses
idées ont ouvrirent la porte a une preuve de la conjecture et influencérent de ma-
niére décisive le développement de ce qu'on appelle aujourd’hui la théorie analytique des
nombres.

En 1895, H. von Mangoldt montra rigoureusement les énoncés principaux de cet article,
qui étaient constatés initialement sans preuve. A partir de ces travaux, la conjecture
fut finalement démonstrée un an plus tard en 1896 indépendemment par J. Hadamard et
Ch.-J. de la Vallée Poussin, presque un siecle apres qu’elle fut formulée pour la premiere
fois.

Théoreme 1.5 (Théoréme des nombres premiers). On a

o n(x)
lim —— =1
x—o0 x /log x

Le but principal de ce cours sera d’introduire les définitions et méthodes de base de
la théorie analytique des nombres, afin de montrer ensuite le théoréme des progressions
arithmétiques et le théoréeme des nombres premiers.

1.2 Notation

Bien qu’on introduira toute les notations nécessaire, on dit quelques mots sur les nota-
tion utilisées dans ce qui suit. On suit la convention que 'ensemble des entiers naturels
ne contient pas le zéro, c’est a dire

N=1{1,2,3,...}.

La variable p sera reservée sans exception pour noter un nombre premier, et on utilisera
parfois la notation PP pour noter 'ensemble des nombres premiers,

P:={p € N: p premier}.

On suivrat 'usage usuel dans la théorie analytique des nombres, que le plus grand
commun diviseur de deux entiers a et b soit noté par (a, b),

(a,b) :=max{d eN:d|a, d|b}.
La partie entiere d'un nombre réel x est définie comme
[x]:=max{a€Z:x—1<a<x}.

Similairement on définit la partie fractionelle comme {x} :=x —[x].

1. Sur le nombre de nombres premiers inférieurs a une taille donnée



Chapitre 2

Fonctions arithmétiques

2.1 Définition

On commence avec la définition simple suivante, qui se révelera quand méme tres utile
et qui nous accompagnera tout au long de ce cours.

Définition. Une fonction arithmétique est une fonction a valeurs complexes de 'ensemble
des entiers naturels.

On note A 'ensemble des toutes les fonctions arithmétiques. Voici quelques premiers
exemples de fonctions arithmétiques que ’on rencontrera souvent :

e Fonction identité : id(n) :=n

e Fonction constante égalea 1: g(n) :=1

e Fonction indicatrice des nombres premiers : §p(n) := 7t(n) —n(n—1)

e Logarithme : log(n)

e Fonction nombre de diviseurs : 7(n) :={d €N :d | n}

e Fonction phi d’Euler : p(n):={aeN:1<a<n, (a,n)=1}

e Fonction nombre de diviseurs premiers distincts : w(n) :={p €P:p | n}

Bien stir avec le temps on fera la connaissance de beaucoup d’autres fonctions arithmé-
tiques importantes.

2.2 Fonctions multiplicatives
Les fonctions arithmétiques qui sont compatibles avec la structure multiplicative de N
jouent un rdle particulierement important, qui mérite sa propre définition.

Définition. Une fonction arithmétique f est appellée multiplicative, si elle n’est pas identi-
quement nulle et si
a(nyny) = a(ny)a(ny) 2.1)

pour tout nq,n, € N tels que (nq,, ) = 1. Elle est appelée complétement multiplicative si elle
satisfait la condition (2.1) pour tout ny,n, €N.

On note que pour tout fonction multiplicative f, on a nécessairement f (1) = 1. De plus,
si la décomposition en produit de facteurs premiers d'un nombre naturel n est donnée par

n=p,"1--p,b, (2.2)



avec des premiers distincts p,. .., p,, alors la valeur de f(n) est donnée par

f=FfmE" - fp.").

En d’autres mots, une fonction multiplicative est determinée par ses valeurs sur des puis-
sances de nombres premiers, un principe qu’on utilisera beaucoup de fois. Similairement,
une fonction completement multiplicative est determinée par ses valeurs sur des nombres
premiers.

Evidemment, les fonctions id et ¢ sont complétement multiplicatives. Par contre, les
fonctions dp, log et w ne sont ni multiplicatives, ni completement multiplicatives.

En ce qui concerne la fonction 7, il n’est pas difficile de montrer qu’elle est une fonction
multiplicative. En effet, si la factorisation de n est donnée par (2.2)), alors tout diviseur
de n sécrit comme

d=p,"---pr avec 0< U<t

A linverse tout nombre de cette forme est clairement un diviseur de n. Alors, on a pour
le nombre de diviseurs de n,

()=l +1)--- (L, +1).

Cela montre de plus, que T est multiplicative, et que ses valuers sur les puissances des
nombres premiers sont données par

T(pH) = +1).

La fonction ¢ est aussi multiplicative. Pour voir cela, supposons que n, et n, soient des
entiers premiers entre eux. Comme les deux groupes

(Z/ninaZ)* et (Z/mZ)" x (Z/nyZ)"

sont isomorphes, ce qui est une conséquence immédiate du théoréme chinois des résidus,
on obtient

p(nyny) = |(Z/n1n22)x| = |(Z/H1Z)XH(Z/HZZ)X| = p(n)p(ny).

Plus tard on donnera une deuxieme preuve de ce fait en utilisant une méthode différente.

2.3 La convolution de Dirichlet

L'ensemble A posséde une structure additive, qui est simplement donnée par 'addition
usuelle des fonctions. Naivement, on pourrait munir A de la méme maniére d’une struc-
ture multiplicative, mais il se révélera qu'une autre définition est plus appropriée dans
notre contexte.

Définition. Soit f,g € A. La convolution de Dirichlet de f et g, notée par f * g, est la
fonction arithmétique définie par

(f «)m:= > 7 (g 5)

d|n

La signification de cette définition vient du fait qu'un grand nombre de fonctions arith-
métiques sont définies comme la convolution d’autres fonctions arithmétiques plus simples.
Par exemple, on a

T=¢gx€e et w=¢*0p,



et on verra beaucoup d’autres relations de cette forme dans ce qui suit.
Une propriété importante de la convolution de Dirichlet est le fait qu’elle préserve la
multiplicativité.

Théoreme 2.1. Soient f, g € A des fonctions multiplicatives. Alors leur convolution f * g
est aussi multiplicative.

Preuve. Soith := f*g. Il faut montrer que h(n;n,) = h(n;)h(n,) pour tous entiers n; et n,
premiers entre eux. Comme (n,n,) = 1, il existe une bijection entre 'ensemble des divi-
seurs de n;n, et 'ensemble des paires de diviseurs de n; et n,,

{deN:d|nn,} — {(dy,d;) EN*: d; | ny, dy | ny},
qui est donnée par les applications
d — ((d: nl): (d: HZ)) et d1d2 A (dIJ d2)

Par conséquent on a

nin mn
h(nyny) = dlnsz(d)g(%) = ; fldid;)g (didj )
dy|ny

et comme f et g sont multiplicatives, cette derniere expression se transforme en

2 rews( ) = Sseanrcan G o)

dylny
dyln, dyny
n; ny
= D f(dg( 2 ) D f(do)g| 2 ) = h(n)h(ny),
dy|ny 1 dyny 2
ce qui est exactement ce qu’on voulait montrer. O

Remarquons que ce théoréme ne reste plus vrai si on remplace la notion « multiplica-
tive » par la notion plus restrictive « completement multiplicative ». Par exemple, la fonc-
tion 7 est la convolution de deux fonctions completement multiplicative, mais elle-méme
ne l'est pas.

L’élement neutre par rapport a la convolution de Dirichlet est la fonction

o) 22{1 sin=1,

0 sinon,

que l'on peut vérifier facilement.

Théoréme 2.2. Lensemble A, muni de Uaddition usuelle des fonctions comme addition et de
la convolution de Dirichlet comme multiplication, est un anneau commutatif unitaire avec
element neutre e.

2.4 Invertibilité des fonctions arithmétiques

Une question qui se pose naturellement est de savoir quelles sont les fonctions arith-
métiques qui ont un inverse par rapport a la convolution de Dirichlet. Etonnamment, la
caractérisation de ces fonctions est assez simple.



Théoréme 2.3. Une fonction arithmétique f est inversible si et seulement si f (1) # 0.

Preuve. Soit f € A inversible. Alors il existe g € A telle que f * g = e, et par conséquent
on a

1=(fxg)(1) = f(1)g(1),

ce qui n’est possible que si (1) # 0.
A Tinverse, soit f € A telle que f(1) # 0. Alors on procéde par récurrence pour
construire un inverse g de f. On pose

1
g(1):= m,

et, si g(d) est déja définie pour tout d < n, on définit g(n) par

1 n
g(n):= —m dzlnzf(d)g(a)
d#1

Cette fonction est bien définie, car f (1) # 0, et par définition satisfait la condition f xg =
e. Alors f est inversible. O

Si f € A est inversible, on note f ! son inverse et on I'appelle I'inverse de Dirichlet
de f. Comme on peut s’y attendre, 'opération de prendre I'inverse est compatible avec la
multiplicativité.

Théoréme 2.4. Soit f € A multiplicative. Alors son inverse est aussi multiplicative.

Preuve. On avait déja mentionné au-dessus que toute fonction arithmétique f satisfait
la condition f(1) = 1, ce qui assure I'existence de linverse f~!. Afin de montrer la
multiplicativité de f !, on construit une fonction multiplicative g qui satisfait la condi-
tion f % g = e. Par 'unicité de I'inverse, cela montrera que f ! est en effet multiplicative.

Naturellement, on pose g(1) := 1. Sur les puissances des premiers p’ on définit g(p*)
simplement par

g(p") = f71(p"),

et alors on étend cette définition par multiplicativité a tous les nombres naturels. Il reste
a vérifier la condition f x g =e.

Comme f et g sont multiplicatives, alors leur convolution f % g I'est aussi. Puisque la
fonction e est également multiplicative, il suffit de vérifier la condition f x g = e pour des
puissances de nombres premiers. Mais on a

{ {
(F*P) =D fP@' ™) =D ) =(f +f ") =0,
j=0 j=0

ce qui conclut la preuve. O

2.5 La fonction de Mobius

On finit ce chapitre avec la discussion d’une fonction qui, au premier coup d’ceil semble
insignifiante, mais qui joue un role trés important dans la théorie analytique des nombres.
C’est la fonction de Mébius u(n), qui est simplement définie comme l'inverse de Dirichlet
de la fonction constante égale a 1,

ui=¢

10



En d’autre mots, c’est 'unique fonction arithmétique, qui satisfait les conditions

wl)=1 et Zu(d) =0 pourtout n=2.
d|n

Il est possible de trouver une description plus explicite en suivant 'idée utilisé dans
la preuve du théoreme Comme la fonction ¢ est multiplicative, alors la fonction de
Mobius l’est aussi. Etant donné un nombre premier p, on a

0=(e*u)(p)=u(1)+ ulp),

ce qui implique que u(p) = —1, et de la méme maniére on obtient pour tout £ > 2 I'identité

L
. up) =0,
=2

qui montre par récurrence que u(p‘) = 0 pour tout £ > 2. En résumé, on obtient la
description alternative suivante pour la fonction de Mébius :

1 sin=1,
w(n) =1 (-1)¢ si n est le produit de £ nombres premiers distincts,
0 sinon.

Une conséquence immédiate de la définition initiale de y comme l'inverse de Dirichlet
de ¢ est le résultat suivant.

Théoreme 2.5 (Formule d’inversion de M&bius). Soit f, g € A. Alors on a

g(n) ZZf(d) pour tout n €N,
d|n

si et seulement si

(=" udg(= N.
f(n dzln:,u g(d) pour tout n €

Le principe derriére ce résultat s’avere parfois tres utile, et afin d’en donner un exemple,
considérons la fonction ¢ * £. Cette fonction est clairement multiplicative, et ses valeurs
sur des puissances de premiers sont données par

0 .
(pre)p) =1+ p (=D =1 +(p—1)l;T11 =p".
j=1

ce qui montre que ¢ * ¢ = id. En multipliant les deux cotés par l'identité, on obtient la
relation

¢ =id*u,
ou, plus explicitement,
p(n) Z p(d)
—l =) —. (2.3)
n o d

11



Chapitre 3

Estimations asymptotiques

3.1 La notation de Landau

Afin de pouvoir décrire précisement le comportement asymptotiques des fonctions, il
est utile d’introduire la notation suivante, qui est omniprésente dans la théorie analytique
des nombres.

Soit D c C, et soient f : D —» C et g : D — [0, 00) des fonctions. On pose

f=0(g) ou f<yg,
s'il existe une constante réelle positive C telle que
|f(z)] < Cg(z) pourtout z€D.

Comme une variation de cette notation, on écrira

fi=fa+0(g),

si f1, fo : D — C sont des fonctions telles que f; — f, < g.
Si f est une fonction a valeurs positives, on note
f=g

lorsqu’on a
g et g<f.

Soit 2z un point d’accumulation de D. On note

f(z)=o0(g(z)) pour z—z,

si g(z) # 0 pour tout z € D et si

e
M e

Comme avant, on utilisera la notation

fl =f2+o(g):

pour dire que fi,f, : D — C sont des fonctions telles que f; — f, = 0(g). Comme cas
spécial, on note

0.

fi2) ~ fi(z) pour z — z,

12



lorsque
f1(z)— f1(z) = 0(1).

Dans les applications, on omet souvent I'indication de D ou de z,, si le contexte est
clair. Dans les applications les fonctions f et g dépendent souvent de certains parameétres
et dans ces cas 13, la constante C, appelée la constante implicite, dépend aussi de ces
parametres, sauf si indiqué explicitement du contraire.

3.2 La fonction sommatoire d’une fonction arithmétique

Beaucoup de fonction arithmétiques intéressantes affichent un comportement tres irré-
gulier voire chaotique. Deux exemples frappants sont la fonction 7(n), qui d'un c6té prend
des valeurs arbitrairement larges, mais qui de 'autre vaut 2 sur tous les nombres premiers,
et la fonction de Mobius p(n), qui prend les valeurs —1, O et 1 de facon apparemment
aléatoire.

Néanmoins, il est possible d’étudier le comportement général d’une fonction arithmé-
tique f en considérant sa moyenne arithmétique

=S f,

n<x

ou, ce qui revient au méme, sa fonction sommatoire

D> fm), 3.1)

n<x

qui souvent peuvent étre estimées assez précisément, contrairement a la fonction elle-
méme.

Le but de ce chapitre est d’introduire quelques méthodes élémentaires pour déterminer
le comportement asymptotique de la somme pour des fonctions arithmétiques f. En
général, 'objectif est de trouver une expression simple M(x), telle que

Zf(n)~M(x) pour x — ©O.

n<x

Une formule de cette forme est appelée formule asymptotique.

Mais en général, on cherche a obtenir une approximation plus précise de la fonction
sommatoire en donnant aussi une estimation de I'erreur qui en résulte. En d’autres mots,
on cherche des expressions simples M (x) et E(x), telles qu’on peut écrire la somme (3.1)
comme

D ()= M(x) + O(E(x)).

n<x

Cependant, il est souvent nécessaire d’obtenir des résultats plus précis de la forme

D F() = M(x)+O(R(x)),

n<x

ou M(x), ot R(x) est une expression simple qui est inférieure & M(x). Dans ce contexte,
la fonction M (x) s’appelle le terme principal et 'expression R(x) est le terme d’erreur.

13



3.3 Approximation par une intégrale

Le cas le plus simple est si f € A est la restriction d'une fonction réelle continue. Si la
variation de f n’est pas trop grande, on peut s’attendre a ce que sa fonction sommatoire
soit bien approchée par l'intégrale correspondante, c’est a dire que l'on a

X
D fm)~ f F(E)dE.
n<x 1

Un premier résultat, qui donne une forme précise a cette idée, est le suivant.

Théoreéme 3.1. Soient x,y € R tels que y < x, et soit f : [y,x] — R une fonction mono-
tone. Alors

D, fm =J fFE)AE+o(f (I +1f ()D.
y

y<n<x

Preuve. Supposons que f soit croissante. En utilisant le fait que pour tout

n n+1
f f(i)dgsf(n)sj f(E)dE pour y+1<n<x-—1,
n—1 n

on obtient
x—1 X
f fEdEs > f(n)sf F(§)de,
y y+1l<n<x—1 y+1
d’ott le théoréme. Le cas f décroissante se montre de la méme maniere. O

Comme applicaton immédiate de ce théoréme, on obtient I'estimation asymptotique
suivante pour la fonction sommatoire de ¢,

>1=x+0(1),

n<x

ainsi que pour celle du logarithme,

Zlogn = x logx — x + O(log x). 3.2)

n<x

Bien que cette formule simple se rende souvent utile, elle n’est applicable que pour une
classe comparativement petite de 'ensemble des fonctions. Afin de traiter des fonctions
plus générales, la formule sommatoire suivante est utile.

Théoréme 3.2 (Formule sommatoire d’Euler-Maclaurin). Soit x,y € R tels que y < x, et
soit f : [y, x] — C une fonction continiiment dérivable. Alors

Z f(n)=f f(€)d€+J Y(EF'(E)AE+y(Nf () —p(x)f (x), (3.3)
y y

y<n<x

ot1 (&) est la fonction définie par

1
P(&):={&} -2
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Preuve. Observons tout d’abord qu’on peut supposer [y]+ 1 < x, car sinon la formule se
montre de maniére triviale.

On considére en premier le cas y,x € Z. En utilisant I'intégration par parties, on peut
vérifier facilement que pour tout n € Z,

fatD+fm) _ (" " 1,
f—ﬁ f(@d&fn (-n-3 )@ e4

La formule (3.3)) suit immédiatement en sommant cette identité sur tout les entiers n dans
lintervalle [y, x —1].
Afin de traiter le cas général, on écrit la somme comme

D Fm=fIyl+D+ >, fn).

y<n<x [yl+1<n<[x]

En évaluant la somme a droite par (3.3)), et en observant les identités

@+ | w@r @=Ly,
[x] [x]
et
[¥] [y]+1
f F(E)dE + f @@=y,
Yy Yy

qui peuvent étre montrées de la méme maniere que l'identité (3.4) au-dessus, on la for-

mule (3.3)). O

Pour donner un premier exemple d’une application de ce résultat, on estime les sommes
partielles de la série harmonique.

Théoreme 3.3. On a pour, tout x > 1,
1 1

Z—zlogx+y+0(—), (3.5)
n x

n<x

ol la constante y est définie par

{&}
y:=1 —fl 52 d&

Preuve. En utilisant le théoréme (3.2), on obtient

f g f v M o
n<x 6
logxa Lo w(g) w(g) )
2 1 X
On peut borner les deux derniers termes par

w(g) RIOH _d€+1<<1

« &
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et on obtient la formule asymptotique (3.5) en notant que I'intégrale dans I'expression

1 (TyE) ., * {5}
E_L 2 dg—l—fl Ezdg

converge absolument. O

La constante v, qui apparait dans la formule asymptotique (3.5)), est appelé la constante
d’Euler-Mascheroni. Une définition alternative, qui est une conséquence directe du théo-

reme (3.3} est
. 1
Y-&%(Z;—logx)-

n<x

3.4 La méthode de convolution

Effectivement, les méthodes introduites dans la section précedente ne s’appliquent que
pour le sous-ensemble des fonctions arithmétiques ayant un comportement treés régu-
lier, qui exclut notamment les cas les plus intéressants comme par exemple 7(n) et ¢(n).
Cependant, il est souvent possible d’obtenir des résultats dans ces cas en notant que beau-
coup de ces fonctions s’écrivent comme des convolution de fonctions plus simples.

Sif € A, l'idée générale est d’exprimer cette fonction comme une convolution f = gxh,
ol g est une fonction arithmétique, qui est dans un certain sens une bonne approximation
de f et dont le comportement asymptotique est bien compris, et olt h est une fonction
arithmétique comparativement petite. Alors, on a pour la fonction sommatoire de f,

D= nd) > gn),

n<x d<x n<%

et souvent on peut obtenir une formule asymptotique en estimant d’abord la somme sur n,
et en complétant apres la somme sur d.

Comme premiére application de cette idée, on montre la formule asymptotique suivante
pour la fonction sommatoire de ¢(n).

Théoreme 3.4. Il existe une constante réelle C, telle que

Z ¢(n) = Cx?+ 0(xlog x).

n<x

Preuve. En utilisant I'identité (2.3)), on peut écrire la somme comme suit,

Z@(n)=zn2@=2$2n=2u(d)2n.
d<x

n<x n<x  dln n<x d<x n<%
d|n

Par le théoreme|3.1| on a

ce qui nous donne

> e =Zu(d)(§—z +o(;—“)) =3 ) +O(XZ%).

n<x d<x d<x d<x
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On peut estimer la somme sur d comme suit,

pd) _hpd) | L\_se@d (1
SRS oS )= +o(1)

et en posant

& u(d)
=2

d=1
on obtient finalement
1

Z e(n)=x (C + O( )) +0(xlogx) = x*C + O(xlog x),
n<x
ce qui est la formule asymptotique cherchée. O

Plus tard dans le cours on trouvera la valeur exacte de la constante C, qui apparait dans
cette formule asymptotique.

Une autre exemple ol cette idée peut étre appliquée avec succes concerne les entiers

sans facteur carré (square-free integers), qui sont par définition les entiers qui non divi-
sibles par le carré d'un premier.

3.5 La méthode hyperbolique de Dirichlet

La prochaine fonction que 'on veut considérer est la fonction diviseur 7(n). Comme on
peut écrire cette fonction comme la convolution T = € x €, on peut essayer d’appliquer
la méthode de convolution. Cela fonctionne, mais la formule qui en résulte a un terme
d’erreur tres mauvais :

Z d(n) = xlogx + O(x).

n<x

Une méthode plus sophistiquée, due a Dirichlet, donne un résultat bien meilleur.
Théoreme 3.5. On a, pour tout x > 1,
Z d(n) = xlogx + (2y — 1)x + O(Vx).
n<x
Preuve. Lidée principale est d’interpréter la somme comme I'ensemble des points (a, b) €
N? tels que ab < x, c’est a dire
> w(n) = #{(a,b) eN? 1 ab < x}.
n<x
Maintenant, on sectionne cet ensemble en trois parties disjointes,
1:={(a,b)eN?:a,b < Vx},
II:={(a,b) eN?:b> /x,ab < x},
Il:={(a,b) eN?:a> +/x,ab < x}.

Cela correspond a écrire la somme en question comme

Zd(n)z Z 1+2 Z 1. (3.6)

n<x a,b<x ab<x

a=/x

17



La deuxiéme somme s’évalue facilement

D> 1=(Vx+0(1)*=x+0(Vx). 3.7
a,b<yx

Concernant l'autre, on a en utilisant le théoréme [3.3]

Si=> S= Z(%+O(1))=x > %+o(ﬁ),

ab<x b<yxa<i b<yx b<y/x
az./x

et en utilisant le théoréme|3.3| on obtient

> =x(lo% +y+o(%)) +0(vx) = XI(;gx +xy 4 0(vx). (3.8)

ab<x
a>y/x
Le théoréme suit finalement en insérant (3.7) et (3.8) dans (3.6). O

Il est tentant d’interpreter ce résultat en disant qu’en moyenne un entier n a envi-
ron logn diviseurs.

Théoréme 3.6. Soit A> 0. Alors il existe un nombre infini de n € N tels que
(logn)* < d(n).

Preuve. Soient pq,...,par; des nombres premiers distincts. On pose n = (p; - Pat1)’>
ol r > 1 est un entier positif arbitraire. Par la multiplicativité de la fonction nombre de
diviseurs, on peut calculer la valeur de d(n) comme suivant,

d(n)=d(p,")--d(ppp") = (r + 14
En ce qui concerne (logn)*, on a simplement
(logn)* = r(logp; + ... +logpasi Y
Donc, dés lors que r > (logp; + ... +1og 4,1 ), on obtient 'inégalité
(logn)* < ! < (r + 1) = d(n).

Parce qu’on peut choisir r arbitrairement, cela montre qu’il existe un nombre infini de n €
N tel que (logn)* < d(n). O

Théoréme 3.7. Soit € > 0. Alors il existe une constante C, > 0 telle que pour tout n € N
d(N) < C,n’.
Preuve. Soit P, I'ensemble donné par
P, := {p eP:p< el/'g}.
Par la définition de P, et par l'inégalité r + 1 < e”, qui est vraie pour tous r € N, on sait

que
r+1

par

<1 pourtous p¢P., et reN.
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En plus, on définit le nombre réel M, comme

p+1
M, := max .
pel0,00) 2¢P

Or,sineNetsin=p;"---p,” est sa décomposition en produit de facteurs premiers, on

d(n) l—[(r+1) l—[(r+1) l—[(r+1) < [T M <m,

1<i<t Dbi 1<i<t pi 1<i<t 1<i<(
pi€P; pi€P; pi€P;
et I'énoncé se déduit en posant C, := M, /P, O

3.6 La formule sommatoire d’Abel
Théoreme 3.8 (Formule sommatoire d’Abel). Soit f une fonction arithmétique, soient

x,y € Rtels que 0 < y < x, et soit g : [y,x] — C une fonction contintiment dérivable.
Alors

> Fmgn) = (Zf(n))g(x)—(Zf(n))g(y)—f (Zf(n))g’(e)ds.

y<n<x n<x n<y y n<g
Preuve. On pose
F(x):= > f(n).
n<x

On peut supposer que [y]+ 1 < [x], car sinon la somme a gauche ne contient aucun
terme et 'identité devient triviale. Alors, on a

D fmgm)= . (F(n)—F(n—1))g(n)

y<n<x y<nsx

= > Fn)(gn)—g(n+1))+F(x)g([x])— F(y)gyl+1).

y<n<x—1
En transformant la somme dans la derniére ligne comme suit,

[x]
> Fm(gm—gn+1)=— f F(E)g/(£)dE =— f F(£)g'(8)dE,
y<nx-1 [

y<n<x—1 yl+1

et en observant que

F(x)g([xD) =F(x)g(x)— | F(&)g'(§)dg,
[x]
[yl+1

F(y)g([y1+1)=F(y)g(y)+ J F(&)g'(&)dE,

y

on obtient finalement l'identité cherchée. O

Cette formule sommatoire est surtout utile si on cherche a évaluer la somme

> Fmgn),

n<x
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ol f est une fonction arithmétique dont on connait déja bien le comportement asympto-
tique, et ou g est une fonction suffisament réguliere.
Comme illustration simple, on veut trouver une formule asymptotique pour la somme

p(n)
2

Au vu du théoréme il est tout naturel d’utiliser la sommation par parties pour cette
somme. En effet, on a

> @ = (Z <p(n))§ + LX(Z cp(n))é de

n<x n<x n<&

_ Cx*+0(xlogx) +JXC<§2+O(§10g§) a
X 1 E2

=Cx +O(10gx)+f Cd§+0(f %dé)
1 1

=2Cx + 0((logx)?),

ol C est la méme constante que dans le théoreme [3.4
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Chapitre 4

Résultats élémentaires sur les
nombres premiers

4.1 Formes équivalentes du théoréme des nombres
premiers

Il s’avere qu’il est avantageux de considérer des sommes ponderées par un poids appro-
prié. Une possibilité naturelle est d’introduire un poids logarithmique. La fonction 6(x)

définie comme cela est :
0(x):= Zlogp.
p=x

Une autre possibilité est d’utiliser la fonction de von Mangoldt A(n), qui est définie
comme

logp sin=plavecpePetl{>1,
A(n) := .
0 sinon.

Evidemment, cette fonction n’est pas multiplicative. Cependant, il suit immédiatement de
la définition que

Z A(d) =logn,

dln
ou en d’autres mots A * ¢ = log, et en multipliant les deux cotes par u, on voit que

A =logxu.
On note )(x) la fonction sommatoire de cette fonction,
P(x) = > A(n).
n<x

Ces fonctions sont souvent appelées les fonctions de Tchebychev. On a

1
YE-60)= D logp > 1< Y logp( i ) < vlogx,
logp
psVx 2202 p<vx
doncon a
YP(x) = 0(x)+ O(v/xlogx). (4.1)

Le théoréme suivant montre qu’on peut considérer n’importe laquelle des fonctions
7t(x), 8(x) ou ¢(x) afin de montrer le théoréme des nombres premiers.
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Théoreme 4.1. Les trois affirmations suivantes sont équivalentes :
x
nx)~——, 0(x)~x, Px)~x.
log x

Preuve. Ilsuffitde montrer I’équivalence de i) et ii), car 'équivalence avec iii) suit par (4.1).

Supposons que 7t(x) ~ logx Alors par la formule sommatoire d’Abel, on obtient

e(x)=ﬂ(x)logx—f (g)dg—x+o(x)+0(f Ldg).
2

e log&
flog& dc = f Toge ¢

2 * x
1dE < —,
x J; log x
et par conséquent

A Tinverse, supposons que 6(x) ~ x. Comme avant, on utilise la formule sommatoire
d’Abel,

_8)_ [T_e® . x
mx) = log x +L E(log&)? = log x o logx (J (logg)2 )

et similairement comme au-dessus, on voit que

Mais

0(x)=x+o(x).

J (log&)? )2 (IOgX)Z’
et ii) suit. O

Plus tard on se concentrera sur la somme )(x).

4.2 Le théoreme de Tchebychev
Théoreme 4.2. On a

Tc(x)xﬁ, 0(x)=x, P(x)=x.

Preuve. Soit

S(x):= Zlogn—ZZlogn.

n<x n<y

En utilisant la formule , on voit que
S(x) = (log2)x + O(log x).

En particulier, on a
S(x)=x.
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L'idée est maintenant est d’utiliser le fait que log = A x & qui donne une connexion entre
cette somme et les nombres premiers. Comme on a

Zlogn = ZA(d)Z 1= ZA(d)[g],

n<x d<x n<% d<x
on voit que
_ X]_ L . Xl o X
sw=Fu[Z]-2 Z o Z]- S5 5)

Pour I'expression dans les parentheses, on a pour tous a > 1,

[a]—Z[%] €{0,1},

et surtout il est vrai que

[a]—Z[%] -1 si ae[l,2)

En utilisant ces faits, on peut borner la somme S(x) par
x
¥ —(3) <860 < w0
Une conséquence immédiate est
YP(x) = S(x)> x.

De lautre c6té on a

v —y(3) =00,

v= 3035 -o( S5 ) o0

=0 j=0

et

comme attendu.
Laffirmation que 0(x) = x suit immédiatement en considérant (4.1)). De plus, on a

1 6
ogp (X)>> X

m(x) > = s
= logx logx = logx
et 1 26
n(x)Sn(ﬁ)+l Z logpS\/YJr1 (x)<<1x )
0g v/ x S ogx ogx
Cela conclut la preuve. O

4.3 Les théoréemes de Mertens
Théoréme 4.3. On a

1
Z 08P _ logx + O(1).

p=<x
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Preuve. On a
>logn= Y A F]=x2 (d)+O(ZA(d))—xZ M) | o),
n<x d<x d<x d<x d<x

ol on a utilisé que P(x) < x, comme montré au-dessus. En comparant ce résultat
avec (3.2) et en divisant par x, on voit que

Z % =logx + 0O(1).

d<x

En notant que

S A _srlosp)
n

n<x p<x p

log P logp
< 2,0 S 2leer Z =201
- p(p— 1)
P X
>2
on obtient alors le résultat. O
Comme corollaire,
Théoreme 4.4. Il existe une constante réelle M telle que, pour x > 3,

1 1
Z—zloglogx+M+O( )
p log x

p<x

Preuve. On pose

1
E(x):= Z % —logx,

p=x

et on note que par le théoréme on a E(x) < x. Alors

1  logx+0(1) Xlog§+E(§)
i d
25" Tog +L (logere °
E(&) 1
f&loga et f&( oty 610 o)
_ = E©) . 3 1
=loglogx + (L Z(log £ dé +1—1loglog 2) + O(logx ), (4.2)

ol on a utilisé le fait que

_E@E) < *1 1
________d — ___d .
f Z(log£)? g<<fx Eloger =~ ), 82 4 S loga

Comme l'intégrale en (4.2) est non seulement convergente, mais aussi constante, on ob-
tient finalement le résultat. O

Théoreme 4.5. Il existe une constante réel A> 0 telle que pour x > 2,

g(l B %) - 102)(: (1 * O(lo?;x))'
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Preuve. Dans un premier temps on considere la somme

Sa(i-1)

p=x

En utilisant la série de Taylor de logx en 1 on voit que

D)5

et alors
S tog(1-+) =- ZZZ R ZZE e (ZZ )
p=<x p<x (=1 p p<x p (=2 p p>x (=2

On utilise le théoréme [4.4] pour évaluer la premiére somme & droite, la deuxiéme est une
constante et pour le terme d’erreur on a

PIPIEED IED JE D YR P T

p>x (= 2 p>xp (= 0 p>x n>x

1
Zlog(l——)z—loglogx +A’+O( )
log x

p=x

Alors

avec une certaine constante A . En prenant 'exponentielle de chaque c6té et en utilisant

]e |a]‘t que
g g-x

qui est une conséquence immédiate de la série de Taylor de exp en 1, on obtient finalement

[10-3)- (o))

p=<x
Cela conclut la preuve. O

4.4 La fonction sommatoire de u(n)

Ici on considere la fonction sommatoire de u(n)

M(x) = ) u(n),

n<x
aussi appelé la fonctions de Mertens.

Lemme 4.6. On a pour tout x > 1,

Z wd)|

d<x
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Preuve. On peut supposer que x € N. En utilisant le fait que e =u* ¢, on a

1=Y e =3 > u@ =@ 5] =x AL S @ X).

n<x n<x d|n d<x d<x d<x

On note que {%}, on voit que

ZM()

d<x

<1+ <l+x—1<x,

5 wof3)

d<x-1

et le lemme suit en divisant les deux cotes par x.

Théoréme 4.7. Le théoréme des nombres premiers est équivalent a Uaffirmation que

D u(m) = o(x).

n<x

Preuve. Supposons que le théoréeme des nombres premiers est vrai, c’est a dire

P(x) ~ x.
Soit
H(x):= Z w(n)logn.
n<x
Notons que

A(m) = Y u(d)log( 5 ) =logn Y u(d) = > u(d)logd ==Y u(d) logd,

din dn dn dn

et par inversion de Mobius
u(n)logn = —(u* A)(n).

HG) = =3 ) 3 ) ==y )

d<x n<%

Alors

Ici on utilise 'hypothese. Soit € > 0. Alors il existe x, > O telle que

|Y(x)—x| < ex pourtout x = x,.

Alors
H(x)z_d; u@w(3)- Zd<xu(d)w(f)
T XZO;M() Z ua(v(3)-3)- 2 p ().
. =5 = Gex
H()| < x dz/: @ +d2|¢(§)_3 .\ Zd)w(gjl
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Le premier terme est borné par Lemme. Pour le deuxiéme on a par ’hypothése

1
Z qp(g) —g <ex Z l < exlogx + O(x).
d_% d<x/x,
Et pour le troisieme terme
Z ‘w ‘ glog(g) < xq logxoz 1 < (xglogxg)x.
—<d< x/xo<d<x d<x

Apreés tout
|[H(x)| < x(1+ elogx +O(1) + xqlogx,)

et
H(x) < O( 1 )
x logx log x
C’est a dire
H(x)
lim sup
x—oo |Xlogx |~

Comme ¢ était arbitraire, cela montre que

. H(x)
lim =
x—o0 xlogx

Par la formule sommatoire d’Abel,

H(x) _H(E) 1 ("1 B
¥ )= Co f Ellog &) °(l)+o(xL@d€)_°(”'

d<x

Lautre sens est laissé en exercice.
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Chapitre 5

Séries de Dirichlet

5.1 La série de Dirichlet associée a une fonction
arithmétique

Pour des raisons qui deviendront claires on introduit ’analyse complex dans la des outils
a notre disposition dans I’étude des fonctions arithmétiques. Un trés bon moyen de faire
ceci d’utiliser ce qu'on appelle les séries de Dirichlet. C’est d’ailleurs celui-ci qui modelé
la théorie des nombres pendant les derniers siecles. Si f est une fonction arithmétique,
alors la série de Dirichlet associée a f est définie comme

n

L(s):= Z f(?) pour seC.
n=1

11 faut noter en ce moment une convention. Dans la théorie analytique des nombres, c’est
la coutume de noter un nombre complexe s € C comme

s=o0 +it,

ol o0 = Re(s) et t = Im(s).
Le lien entre les fonctions arithmétiques et I’analyse complexe est donné par .

Théoréme 5.1. Soit f € A. Alorsil existe 0, € RU{£00} tel que L (s) converge absolument
pour tout s € C avec Re(s) > 0, et ne converge pas absolument pour tout s € C avec Re(s) <
O,
Preuve. Soit

D :={s € C: Ls(s) converge absolument}.
Si D = {, alors naturellement on a o, = 0. Si D = C, alors on a o, = —00. alors on peut
définir

o, :=inf{Re(s) : s € D},

et on montre que ce nombre satisfait les conditions recherchées .

Si Re(s) < 0, on sait par définition de o, que L;(s) ne converge pas absolument. Par
contre, sis = o +it,s’ = o’ +it’ € C tels que o’ > o, alors

f)

ns’

[ee]

2.

n=1

[ee]

< fF() _ < IfF ()l

n=1

)|

ns

Cela montre que si L (s) converge absolument en s, alors forcément elle converge abso-
lument en s’ pour tout Re(s’) > Re(s). O
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La constante 0,, qui apparait dans le théoréme au-dessus est appelée 'abscisse de
convergence absolue de L (s).
Le sous-ensemble de C est appelé le demi-plan de convergence absolue de L (s).

Théoreme 5.2. Soit f € A. Alors il existe o, € RU {00}, telle que la série de Dirichlet
associée a f converge pour Re(s) > o, et diverge pour Re(s) < o, La convergence est
uniforme sur tout sous-ensemble compact du demi-plan de convergence. De plus, on a

o,—1<o0.<0,.

Preuve. Supposons que L (s) converge en un point s, € C. On veut montrer qu’alors L (s)
converge pour tous Re(s) > Re(s;).

Soit K =[A,B] x [C, D] un compact contenu dans la région de convergennce.

De plus, soit s, € (0, A). Alors les deux nombres suivants existent :

m :=min{Re(s) —Re(sy) :s €K} et M :=max{|s—sy|:s<€K}.
Soit 6 =0 — 0y > 0, et soient
f(n) f(n)
Sey)i= Y, == et Slxy)i= D, ==
n n
x<n<y x<n<ly

Soit € > 0. Par le critére de Cauchy, on sait qu'il existe x, > 1 tel que
ISo(x, ¥)| <& pourtout y>x=x,.

Par sommation partielle,

y
S(X,}’) = Z %nso—s — SO(X,}/)}/SO_S _ (50 _S)f SO(X, g)gso—s—l de.

x<n<y

Par

¥
- M
IS, y) < ey™® +els —solf £ 1dE < 5(1 + M) < 8(1 + —) =:¢
m
X

o—0y

Comme ¢’ ne dépend pas de x ni de y, alors on voit que le critére de Cauchy est satisfaite.
Maintenant posons

D :={s € C: Ls(s) est convergente} et o :=inf{Re(s):s € D}.

D’abord, si D est vide on a g, = o0, et si D = C alors o, = —00.
SiRe(s) < o, alors par définition L (s) est divergente. Sinon il existe s, € D. Mais comme
on avait vu précédemment, alors tout s avec Re(s) > Re(s,) est aussi dans D. Comme
on peut trouver des s arbitrairement proche de la droite Re(s) = o, les deux premiers
résultats sont montrés.

Il reste & montrer I'inégalité. Evidemment, on a 0. < 0.
Supposons que L(s) converge a‘s,. Alors

lim £ _

n—oo nso

0.

En particulier, il existe ny € N, tel que

o)

n-o

<1 pour n=n,,
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et par conséquent on a pour tout s € C,

f)

ns

Alors, sio > oy +1,

et on voit que L¢(s) converge absolument pour tout Re(s) > o, + 1. O

Cette constante o est appelée 'abscisse de convergence simple de L(s).

Remarquons cependant qu’afin de pouvoir faire de I'analyse complexe, il faut s’assurer
que les fonctions définies sont holomorphes. Néanmoins, apres ce qu’on vient de montrer,
ceci est une conséquence immédiate.

Théoreme 5.3 (WeierstraB®). Soit f, : S — C une suite de fonctions holomorphes définies
sur un ouvert S C C. Supposons que f, converge uniformément vers une fonction f sur tout
sous-ensemble compact de S.

Alors f est holomorphe et la suite des dérivées f, converge aussi uniformément vers f' sur
tout compact de S.

En utilisant ce critere, on obtient le théoréme suivant.

Théoréme 5.4. Soit f € A. Alors L¢(s) définit une fonction holomorphe dans son demi-plan
de convergence simple.

Comme une autre conséquence du théoréme on obtient une expression de la déri-
vée de L (s). En effet, on a

, o f(n)logn
Lf(s)=—;—ns ,

et cette série converge aussi dans le demi-plan Re(s) > o..

5.2 Propriétés algébriques des séries de Dirichlet

Pour linstant on n’a considéré les séries de Dirichlet que comme des fonctions holo-
morphes sans lien avec I'arithmétique. Le théoreme le plus important dans ce contexte

Théoreme 5.5. Soient f,g € A, dont les séries de Dirichlet associées Ly et L, converge
absolument en s € C.

Alors la série de Dirichlet associée a leur convolution Ly, converge aussi absolument en s, et
ona

Ly,o(s) = Lg(s)Ly(s).

Preuve. Par la définition de la convolution de Dirichlet il suit immédiatement que

Ly )Ly(s) = Z f(n)g(ny) Z Z f(m)g(flz)—z(f * g)(n) = L.,(5),

s
ny,n,=1 m Tl2 nyny=n
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ol I'échange des sommes est justifiée par la convergence absolue de L et L, au point s.
De méme maniére on voit que

(f xg)(n) *g)(n) f(n 1) 8(ny)
; Zl - n§n|f(n1)||g(n1)| <an1 Zl o :
ce qui montre la convergence absolue de L, as. O

Ce résultat montre que la convolution des fonctions arithmétiques correspond a la mul-
tiplication usuelle des séries de Dirichlet. Au vu de ce résultat, il n’est pas surprenant que
la série de Dirichlet associée a e(n), '’élément neutre de la convolution de Dirichlet, soit
égal a la fonction L,(s) = 1 pour tous s € C.

Il y a une série de Dirichlet particuliére, qui joue un role tellement important dans la
théorie analytique des nombres, que I'on lui a donné son propre nom. C’est la série de
Dirichlet associée a €, qui est plus connu comme la fonction zéta de Riemann,

L(s) := Z %
n=1

Il faut noter que I'abscisse de convergence absolue, tout comme I’abscisse de convergence
simple vaut 1, alors pour l'instant cette fonction n’est définie que pour Re(s) > 1.

Les séries de Dirichlet de beaucoup d’autres fonctions arithmétiques s’expriment en
terme de la fonction zéta de Riemann. Comme 7T s’écrit comme la convolution e % e, on
voit que

L.(s)={(s)*  pour Re(s) > 1.

En utilisant ce fait, et en utilisant que u * ¢ = e, il suit que L,(s){(s) = 1, ou en d’autres
mots

L,(s)= pour Re(s) > 1.

1
4Q)
Ceci permet de plus d’évaluer la constante C du théoréme|[3.4] En utilisant le résultat bien

connu
(o)

n=

:Nl,_.

on voit que
2

> T
2 5(2) "6’

et alors la formule asymptotique dans le théoréme prend la forme

Z p(n) = —x + O(xlogx).

n<x

Pour le logarithme, c’est une conséquence de la dérivation d’une série de Dirichlet

(cf[5.4) :

Liog(s) = =’ (s) pour  Re(s)> 1.
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Concernant la fonction de von Mangoldt A(n), par la relation A = logu, on obtient

g'(s)
g(s)

Lpy(s)=— pour Re(s) > 1.

Finalement, en utilisant 'identité
Lig(s)=¢(s—1) pour  Re(s) > 2.

on voit que la série de Dirichlet associée a la fonction phi d’Euler ¢ = u * id est donnée

par

¢(s—1)
¢(s)

Finalement, une question se pose trés naturellement : existe-t-il des fonctions arithmé-
tiques possédant la méme série de Dirichlet?

L,(s)= pour Re(s) > 2.

Théoreme 5.6. Soit f et g des fonctions arithmétiques telles que leurs séries de Dirichlet
convergent absolument pour tous Re(s) > o et telles que L¢(s) = Ly(s). Alors f = g.

Preuve. Soit h = f — g. Par 'hypotheése, L, converge pour Re(s) > o et y a la valeur 0.
Alors il faut montrer que h(n) = 0 pour tous n.
Par contradiction, soit n le plus petit entier tel que h(n,) = 0. Alors pour o > 0, on a

oo

h(ng) _ Z h(n)
ny? n>n, ne
et alors
0 nOO- _ 0 no 0o no 0—0g
LOEPWLOL- ;0|h(n)|(;) (™)
— ny\%/( n =% n =% S |h(n)|
<S'ih (_0) (_0) - a(_O)
n;g| i) (5 O Z e
En laissant o — oo,
|h(n)| = 0.

O

Ce résultat peut souvent étre utilisé afin de montrer des relations entre des fonctions
arithmétiques. Par exemple, I'identité

d d n
S =2 (E)
est équivalente a dire que
L,(s+1)L,(s)=L,(s +1)L.(s),
qui a l'identité triviale
g(s) 1

G0 TG+

4O
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5.3 Le produit d’Euler

Dans la section précédente, on a vu que la convolution de Dirichlet des fonctions arith-
métiques correspond a la multiplication de séries de Dirichlet. Une autre propriété, pour
laquelle les séries de Dirichlet sont intéressantes est la multiplicativité.

Théoréme 5.7. Soit f € A une fonction multiplicative. Si la série de Dirichlet associée a f
converge absolument en s, alors on a lUidentité

sl ls
Lf(s)zl_[(1+zfg; )), (5.1)
p

(=1

ot le produit infini converge absolument. De plus, si f est complétement multiplicative, alors
Uidentité se simplifie en

L;(s) = ]_[(1—%)_1. (5.2)

p

Preuve. Commencons par montrer que le produit infini (5.1 converge absolument, ce qui

équivaut a dire que la somme
Z i ")
plZs

p |t=1

converge. Mais comme L; converge absolument a s, on voit que

HREB PR ILE

p |t=1 p (=1
Ensuite il faut vérifier que la valeur de ce produit vaut L (s). On pose

[(s; x) := l_[(l +Z f(p&))

p<x

£(")
pés

Si on note py,...,p, les nombres premiers inférieurs ou égaux a x, alors en utilisant la
multiplicativité de f, on peut écrire I1(x) comme

o Zl o
H(x):; Zf(P) f[(l:) Z ez_;)fgjp )

Si on pose
N(x):={neN:p|n=p<x},

par le théoréme fondamental de I’arithmétique, on a

f(n)
2 T

neN\N(x)

Q)

ns

)

n>x

ITI(s;x) — L (s) =

>

et alors
lim [TI(s;x)—Lg(s)[=0
X—00
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Finalement, on note que si f est complétement multiplicative, alors

S-S (-2

(=1 =1

ce qui montre (5.2). O

Le produit infini est appelé le produit d’Euler de L(s). Il est important de noter
que la représentation d’une série de Dirichlet comme produit d’Euler n’est valide que sur
le demi-plan de convergence absolue.

Comme cas spécial, on applique le théoréme[5.7]pour écrire la fonction zéta de Riemann
comme un produit d’Euler. En effet, comme la fonction ¢(n) est complétement multipli-
cative, on obtient

l(s) = l_[(l — I%)_l pour Re(s)>1.

p

5.4 La formule de Perron

Jusqu’ici on a introduit les séries de Dirichlet et on a étudié leur propriétés basiques.
Mais comment peut-on les utiliser afin d’étudier des questions arithmétiques? Une pos-
sibilité est la formule de Perron. En bref, cette formule nous permet de transformer la
fonction sommatoire d’une fonction arithmétique en une intégrale complexe contenant la
série de Dirichlet associée.

Avant de I'énoncer et de la montrer, on montre d’abord une version préliminaire, qui
concerne l'intégrale suivante :

c+iT

ds
L.(y,T) = Y —.
UL c—iT S
Si on définit la fonction 6(y) par
0 si O<y<]1,
5():=4% si y=1,
1 si y>1,

alors le lemme suivant montre que l'intégrale I .(y, T) est une approximation trés proche
de cette fonction.

Lemme 5.8. Soient c,y, T > 0 des nombres réels. Alors

2y°¢ .
13T o v Sty ;é 1,
5 [log y| (5.3)

si y=1.

c+T

Démonstration. Supposons d’abord que y = 1. Ici on peut évaluer la valeur de I.(1,T)
exactement, car

T T z oo
1 dt 1 2 1 © 1 1 1
L(,T)=— == | =_ar== de==>— dt,
2m J_pc+it 2w J, c2+t2 ), 1+¢2 2 r 1+1t2
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et alors

1
Ic(lﬁ T) - E

R | . < de “de . c 2c
< dt < min s — |= mln(l, —) < s
r 14+t2 o 1+t2 ), ¢ T c+T

/c

ce qui montre (5.3) dans ce cas.
Ensuite, supposons que 0 < ¥ < 1. On estimera I.(y,T) de deux facons différentes.
Soit r > max(1, ¢). Par le théoréme intégral de Cauchy, on peut remplacer I'intégrale

c+iT

1 (7T a1 (T Lds 1 ,ds
L, T)=— Y —+-= Y —+5= Yy —.

c—iT s 21 )iy s 2ml J g S

Comme 0 < y < 1, on a pour tout s avec Re(s) =r,

yS
s

<

N |-

>

ce qui nous permet d’estimer le seconde intégrale par

L r+iT sé
omi | .7 s

Or, si on laisse r tendre vers l'infini, on voit que cette intégrale tend vers 0. Alors, on peut
écrire I.(y, T) comme

<

T
r

co—iT c+iT

1 ds 1 ds
Ic(y,T)=—2 f y5—+—2 . Y=
T Je—iT s T Joorit S
Alors
L (7 e Y
1.0y, T)] < f YR ds < .
nT |, T|log y|

Soit maintenant C le cercle de rayon R := +/c2+ T2 centré a lorigine, et soit y* le

chemin qui commence a ¢ —iT et va jusqu'a ¢ +iT en suivant le cercle C. Comme la

fonction yT est holomorphe dans le demi-plan Re(s) > 0, par le théoréme intégral de

Cauchy on a
1 ds
I(y,T)= z—f y—.
niJ.o s

Parce que y <1,ona
Re(s) c
_YY_y
R R

yS
s

et par conséquent

1 y°
I(y,T) < —nR— < ¥°,
(0, T) < S-mRE <y
ce qui montre (5.3) pour 0 < y < 1.
La preuve si y > 1 est similaire. O

En laissant T tendre vers l'infini, on obtient le corollaire suivant du lemme (8.7
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Théoreme 5.9 (Formule de Perron). Soient ¢ > 0 et x, T = 1 des nombres réels. Soit f
une fonction arithmétique dont la série de Dirichlet associée converge absolument en s = c.

Alors, pour x ¢ Z,
c+ioco ds
D=5 J L) =

n<x c—i0o

Cette identité est aussi vraie pour x € Z, si on remplace le dernier terme f (x) par fx ).

Démonstration. Soit x ¢ Z. Comme la série de Dirichlet associée & f converge absolument
pour tout Re(s) = ¢, on peut échanger la somme et I'intégrale,

1 c+iT 1 c+iT s ds
e IR WY B
et par Lemme 5.8 on voit que
1 c+iT
aei | WO ——Zf(n)é( )+EM),
avec
£ ()
E(T)| <2
BT XZ we(1+ TJlog(2)])’

Le théoréme suit en notant que
lim E(T)=0
T—o00

Le cas x € Z se traite de facon similaire. O

En général, l'intégrale en (??) ne converge pas absolument, ce qui pose souvent des
problémes. C’est pour cette raison qu’en pratique, il est plus utile d’appliquer une version
tronquée de cette formule .

Théoréme 5.10 (Formule de Perron, version utile). Soit ¢ > 0, x,> 1 et soit f(n) une
fonction arithmétique dont la série de Dirichlet associée converge absolument en s = c. Alors
on a, pour tous x & 7,

c+iT & xclf(rl)|
Sm=gg |, ue _+O(Z nf(1+T|1°g(%)|))’

n<x n=1

oll on a aussi la borne suivante pour le terme d’erreur;

x| f(n)] x¢ If(n)l , ¥logx
nzl:nC1+T|log )|)<< Z ( T )?rgfg?lf(n)l.

Cette formule est aussi vraie pour x € Z, si on remplace le dernier terme f (x) par fT

Preuve. Comme on avait vu, on a pour tout x > 1,

c+iT
Zf(n)——f Ly(s)x® —+E (x,T),

n<x iT

avec
x‘|f (n)]
+T }log( D

|E.(x, T)|<<Z pot + f([x]).
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On sectionne la somme sur n a droite en trois parties :

DA DL Gt DL )= ED(, T+ EO, T) + EQ(x, T).

[n—x|>% 2<|n—x|<% [n—x|<2

Pour |[n— x| > x /4 on utilise le fait que |log(x/n)| > 1, et alors

) Cxfm) x o f ()
E (X’T)<<|n;|zz < Tliog(2) <% > e

n=1

Pour2<|n—x|<x/4,ona

x n—x [n—x|
(3] = o1+ 7)< =5
n x

X
et alors
x |f (n)|x
E@ x,T)<K — —_—
o (6T T Z . néjn—x|
2<|n—x|<%
X 1 xlogx
< =| max |f(n) Z < g max _|f(n)|.
T \ 2<|n—x|<% |n— x| T  2<jn—x|<%
Slnxl<3 2<|n—x|<% Sln=xl<3

Finalement, pour la somme qui reste, on la borne trivialement,

E®)(x,T) < max |f(n)l.
|n—x|<2

Le lemme suit en rassemblant les bornes.
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Chapitre 6

Le théoreme de la progression
arithmeétique

6.1 Caractéres d’un groupe abélien fini

La premiere étape de la preuve du théoréme [3.1| consiste a traduire la condition de
congruence p = a mod g de maniere sensible aux methodes analytiques. Les outils prin-
cipaux seront certaines fonctions arithmétiques, appelée les caractéres de Dirichlet, qui
sont le sujet de cette séction. On commencera par développer une théorie des caracteres
pour des groupes abéliens finis généraux, pour appliquer les résultats aux cas voulus.

Soit G un groupe abélien fini avec élément neutre e.
Un caractere de G est un morphisme de groupe y : G — C*, ou C* est le groupe multipli-
catif des nombres complexes non nuls.
Lensemble des caractéres de G est noté par G. Cet ensemble forme lui-méme un groupe,
appelé le groupe dual de G, lorsqu’on le munit de la multiplication des fonctions com-
plexes. L'élément neutre est le caractére trivial y,, défini par y,(g) = 1 pour tous g € G,
et 'inverse d’'un élément y € G est Pélément 7, défini par 7(g) := y(g).

Le théoréme suivant montre que G et G sont isomorphes.

Théoréme 6.1. Soit G un group abélien fini et soit G son groupe dual. Alors G et G sont
isomorphes. En particulier, on a |G| = |G].

Démonstration. Par le théoréme de structure des groupes abéliens finis, on sait que G est
isomorphe au produit direct

k
x| |z/nz,
i=1

pour certains ni,...,n; € Z.q. En conséquence, il existe des éléments g,...,8x € G
d’ordres ord(g;) = n;, tels que tout g € G peut étre écrit de facon unique comme suit

g=g" g avec 1<r; <n,.
Si y est un caractére de G, on a

x(8)=x(g)" - x(g)™,

ce qui montre immédiatement que tout y € G est déterminé par ses valeurs en g, ..., €.
De plus, comme g; est d’ordre n;, on a

x(g)" = x(g")=x(e)=1,
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et alors y(g;) est nécessairement une racine n;-ieme de l'unité, ce qui revient a dire qu’il
existe des entiers 1 < a; < n; tels que

2(g) = ¥ 6.1)

ATinverse, étant donnés des entiers 1 < a; < n;, il est clair que la fonction définie par
est un caractére de G, et que pour tout choix de ay, .. ., a; on obtient un caractere différent.
Cela prouve que |G| = |G|.

11 reste 3 montrer que G et G sont isomorphes. Pour cela on définit les caractéres y; € G
en posant

xi(@)=en et x(g;)=1 pour i#j.
Evidemment, les caractéres yq,..., yx engendrent tout le groupe G, et on peut écrire
tout y € G de facon unique comme un produit des ces caractéres,

x=x1"x* avec 1<r; <n,.

En considérant ces faits, il est clair que le morphisme ¢ : G — G défini par (g =z
est un isomorphisme entre G et G. O

Une propriété trés importante des caracteres est le fait qu'ils satisfont les relations d’or-
thogonalité décrites dans le théoréme suivant.

Théoréme 6.2. Soit G un groupe abélien fini. Alors, pour tout g € G,

G st =e,
> = {l) | ; § .. (6.2)
z€6 8 ’
et pour tout y € G,
G St = %0,
PWIGE {'0 s =2 (6.3)
g2€G stox ;é Xo>

Démonstration. On commence avec (6.3). Le formule est évidemment vraie si y = .
Alors on peut supposer que y # x,, auquel cas il existe un élément h € G tel que y (h) # 1.

Or, on a
Dialg) =D xhe) =2 > x(g),

g€G g€G geiG

et comme y (h) # 1, cela implique que

Zx(g)=0-

geCG

Le preuve de est trés similaire. Le cas g = e est trivial. Si g # e, alors il existe un
caractére ¢ € G tel que Y(g) # 1.

D)= > W@ =v() > x(2)
2€6G 2€6 1€6
et comme avant cela implique que
1—y(e) Y. 2(8)=0.
z€6

Comme (g) # 1, alors nécessairement la somme sur y doit étre nulle. O
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Dans la théorie analytique des nombres, on rencontrera deux sortes de caractéres, qui
ont une importance particuliére : Les caractéres additifs et les caracteres multiplicatifs.

Soit ¢ > 1 un entier. Un caractére additif mod g est un caractére du group additif Z/qZ.
Bien qu’un caractere additif v ne soit défini que pour des classes d’équivalences mod q,
on peut le voir aussi comme une fonction arithmétique en posant vy(n) := y(n mod q)
pour n € N (par abus de notation on utilise le méme symbol pour les deux fonctions). 11
existe q caractéres additifs mod g, et comme on a montré dans la preuve du théoréme|6.1]
chaque ¢ mod g peut étre écrit explicitement comme une fonction exponentielle de la
forme ‘

P(n)=e*™7 avec 1<a<q.

Les relations d’orthogonalité prennent la forme

: si n
S et = ¢ s qln,
aoda 0 si qtn,

pour tout n € Z.

Un caractere multiplicatif mod ¢ est un caractere du groupe multiplicatif (Z/qZ)*.
Comme [(Z/qZ)*| = ¢(q), il existe ¢(q) caractéres multiplicatifs mod g. Contrairement
au cas additif, les caractéres multiplicatifs ne peuvent pas étre écrits en général dans une
forme explicite. Un caractere multiplicatif y mod g est initialement supporté sur toutes les
classes d’équivalences mod q qui sont premieres avec q. Il est néanmoins utile de 'étendre
sur tout Z et le voir comme une fonction arithmétique en définissant

x(nmodq)  si (n,q)=1,

0 S (L) £, ©4

x(n) =

(comme avant, on utilise le méme symbole pour les deux fonctions, ce qui en général
ne porte pas de confusion). Une fonction de la forme est appelée un caractere de
Dirichlet. Le caractére de Dirichlet qui correspond au caractere trivial y, mod q est appelé
le caractere principal mod q, et il est defini explicitement par

si (n,q)=1,

n):=
Xo() 0 sinon.

Les relations d’orthogonalité prennent ici la forme

¢v(@ si n=1modgq, e(@) si x =720
= t =
Z () 0 sinon, € Z %) 0 si x # Xo»

x mod q nmod q

L'importance des caractéres de Dirichlet découle du fait qu’il peuvent étre utilisés pour
encoder les relations algébriques en termes de fonctions multiplicatives. En effet, si a et q
sont des nombres entiers premiers entre eux, alors

n=amodq ¢ an=1modgq.

Si f est une fonction arithmétique et si (a,q) = 1, on obtient en utilisant les relations
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d’orthogonalité,

>, fm= > fm)

n<x n<x
n=a mod q an=1mod q

= 520 > 2@

n<x x mod g

7@ f(n)x(n).

x mod g n<x

_ 1
v(q)

Ici, le point crucial est le fait que y est completement multiplicatif. Si f est une fonction
multiplicative, alors f y est aussi une fonction multiplicative.

6.2 Les fonctions L de Dirichlet

Soit y mod q un caractére de Dirichlet. La série de Dirichlet associée a ce caractere est
définie par
x(n)
1= Z -

Cette série converge absolument pour Re(s) > 1 et y définit une fonction holomorphe,
appelée la fonction L de Dirichlet associée a y. Comme y est complétement multiplicatif,
on peut écrire L(s, y) pour Re(s) > 1 aussi comme un produit eulérien,

L(s,x)= l_[(l - @)_1

p P

On commence avec le fonction zéta de Riemann

[ee)

1
()= —,
n
n=1

qui est simplement la fonction L de Dirichlet associée au caractére principal y, mod 1.
Bien que initialement cette fonction ne soit définie que pour Re(s) > 1, il est possible de la
prolonger méromorphiquement au demi-plan Re(s) > 0. En effet, en utilisant la formule
sommatoire d’Abel, on obtient

Z;Jgﬂ “LEL

= ns €s+l
1—s 1
=X b 41-s Telel dg + O(x~Re®),
1—s s—1 1 <§S+1
En laissant x tendre vers I'infini, on alors obtient I'identité suivante pour Re(s) > 1,
_ “g-

Mais I'intégrale sur & converge absolument pour tout Re(s) > 0, et par conséquent on
voit que l'expression a droite définit une fonction méromorphe dans ce demi-plan, qui
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est le prolongement méromorphe cherché de la fonction zéta de Riemann. De plus, cette
identité montre que {(s) posseéde un seul pole simple en s = 1 avec résidue 1.

Les fonctions L de Dirichlet associées aux autres caractéres principaux ont un compor-
tement trés similaire. En effet, si y, et le caractére principal mod g, en utilisant le produit
eulérien on obtient tout de suite

2(P)\ 1\ 1
tm=T1(1-22) = [ (1-2) =l ](1-1).
p (p.9)=1 plq
Cette identité montre que L(s, y,) se prolonge pour tout Re(s) > 0.

Lemme 6.3. Soit y, le caractére principal mod q. Alors L(s, y,) se prolonge méromorphi-
quement au demi-plan Re(s) > 0 avec un seul pdle simple en s = 1 de résidue

Res L(s, xo) = M
s=1 q

Pour les fonctions L des caractéres non-principaux, la situation est bien différente. On
commence avec l'observation suivante

x| <q.

n<x

qui est une conséquence immédiate des relations d’orthogonalité des caracteres de Diri-
chlet et du fait que y est une fonction périodique de période q. En utilisant encore une
fois la formule sommatoire d’Abel

x| |1 ! q qls| 1
ZT - ;Z}((H)-ﬁ-sﬁ x5+l Z;{(n)dé = xRe(s) + IRe(S)l(l_xRe(s) )’

n<x n<x n<&

et on voit que la somme est convergente pour tout Re(s). Par conséquent, cela définit une
fonction holomorphe dans le demi-plan Re(s) > 0.

Lemme 6.4. Soit y mod q un caractére de Dirichlet non-principal. Alors la fonction L de
Dirichlet associée a y se prolonge analytiquement au demi-plan Re(s) > 0.

Le comportement des fonction L de Dirichlet en s = 1 joue un réle important dans la
preuve du théoréme de la progression arithmétique.

6.3 La preuve du théoréme de Dirichlet

Afin de montrer le théoréme|(3.1} on considérera la somme

1
Z _’
p<x p
p=amod q

et on montrera qUelle est en fait divergente. En n’utilisant que des méthodes élémentaires,
on a déja montré que c’est vrai pour le cas ¢ = 1, ot la somme va sur tous les nombres
premiers.

Pour motiver I'idée de la preuve du théoreme de Dirichlet, on donnera maintenant une
deuxiéme démonstration de ce fait, qui cette fois repose sur les séries de Dirichlet.
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Remarquons qu’en utilisant le produit eulérien de la fonction zéta de Riemann, on peut
écrire log({(s)) pour tout s > 1 comme suit,

log(¢(5)) = - Zlog(l——) 5L o

p (=1

et par conséquent

log{(s)= z% +0(1).
p

Cela donne une lien entre la fonction log({(s)) et la somme (??). En particulier, comme
log(Z(s)) tend vers I'infini pour s — 1+, l'identité montre que la somme des réciproques
des nombres premiers est divergente. C’est aussi une preuve analytique de I'infinité des
nombres premiers.

L'idée initiale du preuve du theoreme est tres similaire. On utilise les relations d’or-

thogonalité () ( )
_ — X\p
pr P w(q) 2, 7 )Z

x mod q p<x
p=amod q

et pour analyser la derniére somme sur p on utilise I'idée au-dessus.
Alors, comme avant,

(p)
log(L(s, ) =~y I LAV2R )
og(L(s, x 4 og( p ) im

Ici, il faut faire attention, car le logarithme est complexe. En laissant s — 00, on voit que
m = 0. Alors, on continue

log(L(s,x))z—Zlog( "(p)) ZZ"E%[ =ZXIE€))+O(1). 6.6)
p p

p (=1

Alors

— x(p)
Z ps «p(q) Z ()Z

p=amod q x mod q
= log L(s, x0) + 2(a)logL(s, x)+O(1).
«p(q) " elg )szodq
X# %o

On a utilisé que

Lemme 6.5. Soit y mod q un caractére de Dirichlet non-principal. Alors L(1, y) # 0.

6.4 Non-annulation de L(1, y)

Il reste & montrer le lemme qui est vraiment au cceur de la preuve du théoréme de
la progression arithmétique de Dirichlet. On commence avec 'observation que pour tout
nombre réel s > 1, on a

[1 021 6.7)

x mod q
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En effet, en utilisant I'identité (6.6]), on obtient

D, logh(s,x) = ZZ - > 20H =9 ZZ

x mod q p (= 1 xlnodq p (=1
pt=1mod q

pfs

et alors suit immédiatement en prenant 'exponentielle des deux cotés.
Supposons qu'’il existe deux caractéres non-principaux différents y; et y, mod q, dont
la fonction L de Dirichlet associée s’annule en s = 1. En conséquence, la fonction

[ 60

x mod q

s’annulerait aussi au point s = 1, car L(s, ) y a un pole simple et tout les autres L(s, y) y
sont holomorphes. Mais cela contredit bien évidemment 'observation (6.7)). Alors il existe
au plus un caractere y mod q tel que L(s, y) =0

Pour tout caractére y, il est vrai que

16, x)—Z 20 S0 15y
n=1

pour Re(s) > 1. En prolongeant méromorphiquement les deux cotes, on voit immédiate-
ment que cette identité est vraie aussi dans le demi-plan Re(s) > 0. En particulier, si y
est un caractere tel que L(1, y) = 0, alors on a aussi que L(1,%) = 0. Comme on a vu
au-dessus, il existe au plus un caractere dont la fonction L de Dirichlet s’annule ens =1,
ce qui signifie que y =, c’est a dire y doit étre un caractére réel.

11 suffit donc de prouver le lemme pour des caracteres réels y # y,. Soit 0, (n) la
fonction arithmétique suivante

o, (n)=>"2(d).

d|n

Dans ce qui suit on va considérer I'expression

Z x(n)

n<x nz

et on va 'estimer de deux facons différents.

Comme o, (n) est la convolution des deux fonctions arithmétiques bien connues, il est
raisonnable d’employer la méthode hyperbolique de Dirichlet afin de trouver une formule
asymptotique. On commence en écrivant

52 X(n) Z @ ZX:?) Z Z 3 %(“) 6.8)

n<x ( b) a<./x b<" b<f \/»<a<Y

ab<x

Pour évaluer les sommes sur a, on note que la formule sommatoire d’Abel nous donne

2. % =2 (a)——zx(a)JrGJ.ng > @ |dg

y1<asy; asy, asy; asé
1 1
L—+—.
Y22
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En utilisant cette borne supérieure, on peut estimer le second terme en droite de

comme suit,
a 1 b 1
Z > M (\ +1—/4)<<1-
b'e

by D 2 Jr<asy 2 b<fb

Pour évaluer 'autre terme, on utilise la formule d’Euler-Maclaurin
1 X a

Z _2,/—+c+o(,/—)

<X b 2 a X

pour une certaine constante réelle C. Alors

DIECH NS L ORED JECHE ( <I1)

a<y/x b<x a<y/x a<y/x a= ﬁ
—2x 3 29400,
a<yx

La somme sur a qui reste est convergente, et en utilisant encore une fois (), on peut
I’estimer comme suit,

S =r- > X(a)—L(l )+o(1/_)
a<yx a<yx

En tout, on obtient

>, U”En) =21(1, 7) +0(1).

n<x N2

Cela signifie que le comportement asymptotique de la somme dépend de la valeur de L(1, y ).
Une deuxiéme facon d’évaluer la somme est la suivante. Si p est un premier qui divise q,
alors

o, (p)=1
Sip+tq, alors
¢
o, (0 =>2(p).
=0

on peut caractériser

L+1 si y(1)=1,
O'X(PZ)Z 1 si y(1)=—1 et/ est pair,
0 si y(1)=—1 et { est impair,

En particulier, on voit que o, (p") > 1 pour tout ¢ pair. En plus, si n est un nombre carré,
alors o, (n) = 1. Alors

Zo—x(ln)z Z >Z > log x.

1
n<x 12 n<x n2 n< f
nest un carre

Cela montre que la somme devient arbitrairement large, et par conséquent L(1, y) > O.
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Chapitre 7

L.a fonction zéta de Riemann

7.1 La fonction Gamma

La fonction Gamma I'(s) est définie initialement en posant

I(s):= f eteslde. (7.1)
0

L'intégrale converge absolument dans le demi-plan Re(s) > 0, et alors y définit une fonc-
tion holomorphe. En intégrant par parties, on voit que cette fonction satisfait 'identité

sT(s)=T(s+1), (7.2)

qui nous permet de la prolonger méromorphiquement a tout le plan complexe. En effet, si
on suppose qu’elle est déja définie dans le demi-plan Re(s) > —n ol n est un entier positif,
alors par I'identité (7.2) on peut définir un prolongement au demi-plan Re(s) > —n—1

en posant

I'(s):= F(s: 1).

En utilisant ce principe récursivement, on obtient une fonction méromorphe définie sur
le plan complexe qui posséde des poles simples ens =0,1,2,... avec les résidus

et qui satisfait pour tout s € C I'identité (7.2). En vue de la relation
'(n)=(m—1)! pour ne€N,

on peut voir la fonction Gamma aussi comme une généralisation de la factorielle aux
nombres complexes.

Il existe plusieurs représentations différentes de la fonction Gamma a part la représen-
tation initiale comme intégrale (7.1)). Le résultat suivant en donne un exemple important.

Théoréme 7.1. On a pour tout s € C,

% =se”® ﬁ(l + %)6_%, (7.3)

oll y est la constante d’Euler-Mascheroni.
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Preuve. Notons d’abord que le produit infini converge absolument pour tout s € C, puis-
qu’en écrivant 'exponentielle comme une série entiére, on voit que

10 )7 =LH0 05 0(e) T (o)) <o

En fait, il est clair que la convergence est uniforme sur les compacts, ce qui montre que
le RHS de définit une fonction holomorphe sur C.
Afin de montrer I'identité (7.3]), on peut se restreindre au cas s > 0, car si cette identité est
vrais pour les réels positifs, alors par le théoréme d’identité des fonctions holomorphes,
elle est nécessairement vraie pour tout s € C.

On commence en intégrant par parties pour montrer que

1 1
f Il (1—E)rdE = = f £ (1—s)" 1 dE.
0 S Jo

En utilisant cette formule récursivement, on voit que

! n n—1 n—2 1 ! n!
s—1 1—&)dE =—. . s+n—1d — :
foéj (1=&)y'de s s+1 s+2 .H—n—lLg d ss+1)---(s+n)’

et en faisant la substitution & — % dans l'intégrale a gauche, cette identité devient

n'n’ _ ns_l & n
s(s+1)---(s+n)_f0g (1 n) dé. (7.4)

Maintenant on veut laisser n tendre vers I'infini. Comme la procédure de prendre cette
limite n’est pas tout a fait triviale, on donne les détails. En définissant la suite de fonc-
tions g, : (0,00) — R par

gs—l(l_g)n si g E(O; Tl),

0 si & €[n,o0),

gn(&) := {

on peut écrire (7.4) comme

* n'n’
fo gn(8)dE = GrD - GEn) (7.5)

Notons d’abord que

[ee]

lim g, () =& et J (nlingo gn(é)) dg =T(s).

0

De plus, grace a I'inégalité bien connue

(-5 <

on voit que les fonctions g,(&) sont bornées par

lga(E) < &5,
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Ces faits nous permettent d’utiliser le théoréme de la convergence dominée afin de prendre
la limite n — oo des deux c6tés de (7.5)), et on obtient

S

. lim J gn(£)de = f lim g,(£)dE=I().  (7.6)
0 0

lim =
n—oos(s+1)---(s+n) n—
Ce résultat est essentiellement déja I'identité (7.3). En effet, on écrivant

s(s+ 121-!;1-5(5 +n) =sn* ﬁ(l + %) = SeXp(s(Z % —IOgn)) ﬁ(l + %)6_%’

(=1 (=1

et en laissant n tendre vers I'infini, on obtient
1 . : s : s s
O lim sn™* l_[(l + Z) =se’® l_[(l + Z)e_f,
—00
() n =1 (=1
ce qui est exactement la formule que I'on voulait montrer. O

Dans la preuve du résultat précédent, on a implicitement déduit une autre représenta-
tion pour I'(s), qui mérite son propre théoréme.

Théoreme 7.2. On a pour touts € C\ Z,

S

|
I'(s) = lim R

n—cos(s+1)---(s+n) 7.7)

Preuve. Pour s > 0, on avait déja montre cette formule en (7.6). Le fait qu’elle soit vraie
pour tout les nombres complexes se déduit par prolongement méromorphe. O
Un corollaire immédiat de cette formule est I'identité suivante.

Théoreme 7.3 (Formule de réflexion d’Euler). On a pour tout s € C,

T

I'(s)r(1—s)=— . (7.8)
sin(7ts)
Preuve. Par (7.7) on peut écrire la c6té gauche comme
nin’ nin'=
I'(s)r(1—s)= lim .
(I ) rHOO(s(s+1)---(s+n) (1—5)(2—5)---(n+1—s))
n!’n
= lim
n—00 s(n+1—s)(12 —s2)(22 —s2)---(n2 —s2)
1 1—s\ ' 2\
= lim ={1+ —) 1—— .
n—oo 5( n !;!( Zz)
Ici, on utilise la formule bien connue
. o 2
sin(7ts) _ l—[(l B s_)’
s -1 n2
et le résultat suit immédiatement. O
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En utilisant la formule (7.8) avec s = 1/2 et en notant que I'(1/2) > 0, on obtient

r(%) = V. (7.9)

Une autre formule trés utile est la suivante.

Théoréme 7.4 (Formule de duplication de Legendre). On a pour tout s € C,

1
F(s)l“(s + 5) = Y2751 (2s).
Preuve. On a

4T(I(s+3) . n(n!)? 25(2s +1) -+ (25 + 2n)
Ir(2s) ~ nooo (2n)! sGs+1)--(s+n)-(s+3)(s+3) (s +22)
— lim 22n+1(n!)2 n

n—ee (2n)!n% s+n+ %’

ou en autres mots

1 22n+1 ! 2
F(s)F(s + —) =C27%r(2s) avec C:= lim 4
2 n—  (2n)In:

Mais en mettant s = 1 et en observant (7.9)), il suit que
C=2+m,
et on obtient le résultat cherché. O

Plus tard il sera nécessaire de connaitre le comportement de la fonction gamma d’une
facon trés précise. Dans le cas spécial s € N, c’est a dire pour la factorielle, on a le résultat
classique suivant.

Théoréme 7.5 (Formule de Stirling pour la factorielle). On a
nn
n!~ v2nn—n pour n— 0Q.
e

Preuve. En utilisant la représentation de la fonction Gamma comme intégrale, on voit que
oo
nl = f e SE"dE.
0

Ici on fait la substitution &£ — &4/n + n, ce qui montre que

n! = n’;—n‘/ﬁjoo (1 + %)ne_gﬁdi,
—Va

n

et le théoreme suivra, si on peut montrer que

lim f;@ + %)neﬁﬁ d¢ = V2.

n—oo n
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Afin de montrer cette égalité, on note que
lim (1 + i)ne EVi = hm exp(nlog(l + i) 51/_)
oo\ Ym /i

e Sl 6 )

ol on a utilisé la série de Taylor du logarithme. En raisonnant similairement comme dans
la preuve du théoréme|[7.1] il suit que

limf (1+i) e—iﬁdng e 7 dE = V2,
n—oo —ﬁ ﬁ —oo

ce qui conclut la preuve. O

Pour s € C on a besoin d’'un estimation asymptotique pour I'(s) et c’est le résultat suivant
qui en fournit une.

Théoreme 7.6. Soit 6 > 0. Alors pour tout s € C dans la région définie par la condi-
tion |args| < m—3d6 ona

log2
logT'(s) = (s— 1)logs—s+ 08 2T +O(l), (7.10)
2 2 Is|

et
I'(s)= 1/2_557%675(1 + O( |1| ))

Preuve. La preuve de cette formule se produit en deux étapes. Dans un premier temps on
montre que

1
logT'(s) = (s - 5) logs —

0 _ 1
N log(2m) +J. [E]-&+5 d, 7.11)
0

s E+s
et apreés on prouvera la borne suivante pour l'intégrale a droite,
[ee] 1
[E]-E+3 1
= di< —, (7.12)
0 E+s Is|

qui est vraie pour tout s € C dans la région définie par la condition |args| < ©— 6. Cela
montrera la premiere formule, et la deuxieme suivra simplement en prenant I'exponen-
tielle.

Afin de prouver (7.11)), on considére d’abord l'intégrale

L [g]_g'i'z
IN(s).—JO % (7.13)

ou N est un entier naturel et ot on suppose que s € C\ (—o00,0]. On a

IN(S)_ZJ (n+s+ 1)d£

(n+s+ )(log(n+1+s)—log(n+s)) N

=M§ ZMZ

((n+s+ )log(n+1+s) (n+s——)log(n+s))—zlog(n+s)—N.
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En notant que la premiére somme est une somme télescopique, cette derniére expression
se simplifie en

N-1

IN(s)z(N+s—%)log(N+s)—( )10gs—Zlog(n+s) N.

A ce point, on transforme les deux derniers termes comme suit,

N-1 N-1 N—-1
N+ Zlog(n +s)= Z(log(l + i) - i) + Z SyN+ log((N —1)1),
n=1 n=1 n n n=1 n

et ici on utilise le théoréme [7.5|pour évaluer la factorielle,
1 1
N +log((N—1)) = (N — E)logN + 3 log(27) + o(1).

Pour finir, on obtient
Iy(s) =IP(8) + I () + o(1),
ou

N-1 N—1
1
1) := —Z(log(l + %) — %) —logs —SZ - +slogN,
n=1

n=1

@y .— i) ( _1) ( i)_( _1) _ log(2m)
Iy'(s) slog(1+N +(N 3 log 1+N s 5 logs 5

A ce point on laisse N tendre vers infini. En observant que le théoréme |7.1| nous dit
que

Jim 17(s) = T(s),

et qu'on a en plus

1 log(2
Nli_)rr;oll(vz)(g:s—(s—z)logs— og(2 77:)’

alors on obtient finalement l'identité (7.13)).
Il reste a prouver l'estimation (7.12). On pose

¥(E) = f(m 0+ )dn.

Evidemment on a ¥(£) < 1, et en intégrant par parties on voit que

LE]-E+3 E+3 V¢ <1
J:) €+5 ¢ = f §+s)2d€<<L |§+s|2c15

Si on pose ¢ :=arg(s) avec |¢| < m—§, alors on a

JLEJ—€+-€<l L
0

£+ Is| 1€ +et]?
1 | 1
<3 ey dE+ —d& | —,
s] UO [Tm(e)] L €—2p ) s]
ce qui montre (7.12). Cela conclut la preuve. O
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Comme un corollaire du théoréme précédent, on a le résultat suivant, qui donne une
approximation de la valeur absolue de la fonction gamma dans des bandes verticales.

Corollaire 7.1. Soit 0, 0, et t, des nombres réels tels que o, > 0, et ty > 0. Alors on a

ra-+101 = varierLe 14 1+ of 1))

¢l
pour tout s =0 +it € C tels que 0, < 0 < 05 et |t] = ¢,

Preuve. A venir... O

7.2 L’équation fonctionnelle

On a déja montré comment la fonction {(s), définie initialement pour Re(s) > 1, se
prolonge méromorphiquement au demi-plan Re(s) > 0. Mais comme on verra maintenant,
cela n’est pas toute la vérité, car {(s) se prolonge en fait au tout le plan complexe. En méme
temps, on montrera aussi que cette fonction satisfait une certaine équation fonctionnelle,
qui joue un role trés important.

Théoréme 7.7. La fonction {(s) se prolonge méromorphiquement a tout le plan complexe
et y vérifie Uéquation fonctionnelle

n-%r(%)g(s) - n—?r(%)gu—s), (7.14)

Le seul péle de {(s) se trouve en s = 1, ot elle posséde un péle simple de résidu 1.

On note qu’en utilisant les théoremes (7.3) et (7.9) ’équation fonctionnelle (7.14)
prend aussi la forme

{(s) = 2! sin(%)ru—s)m—s). (7.15)

Gréace au fait que la fonction zéta de Riemann et la fonction gamma ne s’annulent pas
dans le demi-plan Re(s) > 1, cette identité montre en particulier que les zéros de {(s)
avec Re(s) < 0 se trouvent exactement en s = —2,—4,—6,.... On les appelle les zéros
triviaux de {(s). Par contre, tout les autres zéros — appelés les zéros non triviaux — doivent
se trouver dans la bande 0 < Re(s) < 1, aussi appelée la bande critique.

En vue de I'équation fonctionnelle, il est parfois utile de définir la fonction

E(s) 1= s(s — 1)n—%r(%)g(s), (7.16)

qui est aussi appelée la fonction xi de Riemann. C’est une fonction holomorphe définie
sur C et qui satisfait I'’équation fonctionnelle

E(s)=¢&(1—s). (7.17)

De plus, les zéros de cette fonction sont exactement les zéros non triviaux de {(s).
La preuve du théoréme repose essentiellement sur la formule sommatoire de Pois-
son, qui on utilisera dans la forme simple suivante.
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Théoreme 7.8 (Formule sommatoire de Poisson). Soit f : R — R une fonction lisse telle
que f(&) < &N pour tout N € N. Alors on a

PNIOEDWION

nez nez

oll f est la transformée de Fourier de f, qui est définie comme

fn):= f f(E)e2Mme gE.

Afin de montrer le théoréme dans un premier temps on considere la fonction 6 :
(0, 00) — C, qui est définie par la série

0(x) := Ze_“"z".
nez

Notons que cette série converge effectivement pour tout x > 0, car on a

[ee]

100x) < 1 +J e E <14 %

—0o0
En observant que pour x > 1,

[ee] o

)
Zefnnzx — T Zefn(nzfl)x < e T Zefrc(nzfl) <e ™,

n=1 n=1 n=1
on obtient de plus 'estimation suivante,
0(x)= 1+O(e_“x) pour x=>1.

La fonction 6(x) vérifie I’équation fonctionnelle suivante, qui est au cceur de la preuve
du Théoréme

Lemme 7.9. On a pour tout x > 0,

1 1
oc=Lo(1)
vx \x
Preuve. On commence avec l'utilisation de la formule sommatoire de Poisson a la fonc-
. — . \ \
tion & — e ™' * qui meéne a

oo oo
—mn2 —rE2 9 . 2_o: &
E e Tx — E J e 113 Xo Zmnidgz E J e nx({ 21nx)d€‘
nez nezZ J —o0 nezZ J —o0
En complétant le carré dans 'exposant, cette derniere expression se transforme en
oo 9 oo 2

ZJ e—ﬂx(§2_21n;) de = Z o™X = J e—nx(i—%) de.

nezZ J —o0 nez —00
Dans ce qui suit on évaluera explicitement I'intégrale sur £ a droite et on montrera que

(2 ge = L 718
f e & 7% (7.18)

—o0 X
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ce qui par conséquent menera a ’équation fonctionnelle cherchée.
Soit S > 1. Par le théoréme des résidus, on a

S S 0 _n

in)2 . X .

f e—nx(i—;) dg — e—nxgz d5 + IJ e—1'cx(—S+1'r))Z dn + lf e—nx(S+1n)2 dT)
—S -S -3 0

Pour les deux intégrales sur ) on a la borne

0 -
lf e*TEX(*S‘FiT])Z dn + lj e*'frx(SvLin)2 dn < Ee—ﬂ:xSZ-%—an%
X

1 0

et en laissant S tendre vers l'infini, on voit alors que

Cela montre ( et conclut la preuve. O

Maintenant on est prét a prouver le théoréme En faisant la substitution & — n?&

en (7.1), on voit que

F(i) = nnzf e ™ E(n2E) i dE,
2 0

pour Re(s) > 0, ce qui mene a

wir(g)e = J eTreEiTdE.

0

Ici on somme n sur tous les nombres naturels et on obtient la représentation suivante
de {(s) comme intégrale

d¢

n EF( C(S)— f (0(5)—1)gz = £

valide initialement dans le demi-plan Re(s) > 1.
Ici I'idée est d’exprimer l'intégrale a droite qui n’est convergente que dans le demi-
plan Re(s) > 1 de facon a ce qu’elle devienne une expression qui converge pour tout s €

C\ {1}. En effet, on écrit

f 0(5)— 1)&* f(e(g) 1)5* f 0(5)— 1)§z§

et en utilisant ’équation fonctionnelle de 8(x) dans la premiere intégrale du RHS, cette
expression devient

sdf 1 1( 1 (1 ) . dE

0 S ==0(z)-1)et ==
f((g) Ve = 2L\/3(5)1€5
=1f (VEoE) —1)e &

f (0©-DET F+ =5
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Apreés tout on obtient

1 1
1—s s

dg
=

Ici il faut noter que l'intégrale converge pour tout s € C. Par conséquent le RHS définit
une fonction méromorphe, ce qui nous donne le prolongement méromorphe de {(s) décrit
dans le théoréme De plus, le RHS reste inchangé si on remplace s avec 1 —s, ce qui
montre 'équation fonctionnelle (7.14)).

En ce qui concerne les poles de {(s), on avait déja vu que le seul pole dans le demi-
plan Re(s) > 0 se trouve en s = 1, et que c’est un pole simple. Par '’équation fonctionnelle
que l'on vient de prouver, et par le fait que I'(s) a un pole simple en s = 0, il est pourtant
clair que {(s) n’a pas d’autres poles dans C.

(3 )ee =- +§f (0@ -1(gi+7)
1

7.3 Fonctions d’ordre 1

On a déja vu que la fonction {(s) s’écrit pour Re(s) > 1 comme un produit infini qui
va sur tous les nombres premiers. Le but de cette section est de prouver une autre repré-
sentation de {(s) comme produit infini. Cette fois c’est un produit qui est indexé par ses
zéros et qu’on appelle la factorisation de Hadamard de {(s). Comme cette factorisation est
valable pour une classe tres générale de fonctions holomorphes, on développera la théo-
rie dans un premier temps pour des fonctions holomorphes générales, afin de 'appliquer
ensuite au cas spécial {(s).

Un théoreme bien connu de I'analyse complexe dit que tout fonction entiere f, qui
satisfait la borne f(s) < |s|* pour un réel a > 0, est en fait un polynéme de degré au
plus a. Le lemme suivant est une variation de ce résultat qui requiert des conditions plus
faibles.

Lemme 7.10. Soient C, a > O des constantes réelles. Si f est une fonction entiére qui satisfait
la condition
Ref(s) < C(1+|s|*) pourtout seC, (7.19)

alors f est un polynéme de degré au plus a.

Preuve. Sans perte de généralité on peut supposer que f s’annule en 0, car sinon on
simplement remplace la fonction f (s) par f(s) — £ (0).
Alors on peut exprimer cette fonction comme une série de Taylor

F&)=> (a,+ib,)s"
n=1

qui converge pour tout s € C. Pour des nombres complexe donnés en coordonnées po-
laires s = re?™9 la partie réelle de f(s) s'exprime de facon simple comme

Re f (re?™%) = Zan cos(2mnO)r" —Z b, sin(27no).
n=1 n=1

Ici on multiplie les deux cotés par cos(27£60) avec £ € N, et on prend l'intégral sur 6 afin
d’obtenir I'identité

1
ZJ Re f (rel?) cos(2m€0)d6 = a,r’.
0
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Notons qu’il suit de méme maniere que

1
f Re f(rel?)do =o0.
0

En utilisant la condition (7.19)), on obtient la borne suivante pour les coefficients a,,

1 1
la,| < %f |Ref(rjeie)|d9=3f (IRe f(r;e')| +Ref(r;e?))do
0 0

j Tyt
4 (1
< —ef max{O, Ref(rjeie)}de < rj“_e,
" Jo

et en laissant j tendre vers l'infini, il suit que a, = 0, & condition que ¢ > a.

Le méme raisonnement, en remplacant cos(27£6) par sin(27t£0) dans l'intégrale sur 6,
montre que b, = 0 pour tout { > a. Par conséquent on voit que f est bien un polynome
de degré au plus a comme on voulait le montrer. O

Soit f : C — C une fonction entiere. On dit que la fonction f est d’ordre borné s'’il
existe une constante a > O telle que f satisfait la condition

f(s)=0(exp(|s|*)) pourtout seC.
Si f est d’ordre borné, le nombre
inf{a > 0: f(s) < exp(Js|)}

est appelé l'ordre de f.
Si f est une fonction d’ordre borné qui n’a pas de zéros sur C, le lemme suivant montre
que f doit avoir une forme trés spécifique.

Lemme 7.11. Soit f une fonction entiére d’ordre borné qui ne s’annule par sur C. Alors elle
est de la forme

f(s) =exp(P(s)),

otlt P est un polynéme de degré au plus Uordre de f.

Preuve. Soit a 'ordre de f. Comme f ne s’annule pas, la fonction log f (s) est bien définie
et on a I'estimation
Relog f(s) < |s|**®

pour tout € > 0. Le résultat suit alors en appliquant le lemme|7.10 O

Bien sfir il sera nécessaire d’étudier aussi des fonctions d’ordre fini qui possédent des
zéros. Le théoreme suivant se rendra utile pour controler les nombres de zéros de telles
fonctions.

Théoreme 7.12 (Formule de Jensen). Soit R > 0. Soit f une fonction holomorphe dans un
voisinage du disque {s € C : |s| < R}, qui ne s‘annule ni en 0 ni sur le cercle {s € C : |s| = R}.
Alors on a l'égalité
1 ([ R
— f log| (Re'*)] d6 = log|f (0)] + Y log 1,
21 ), > lpl

ol p parcourt Uensemble de zéros de f de module borné par R, comptés avec multiplicite.
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Preuve. On factorise f en

F&=FS] J6—p),
P
ot f est une fonction holomorphe, qui ne s’annule pas pour |s| < R. On a alors

loglf (s)| = log|f ()] + D logls —pl,
o)

et on voit qu’il suffira de montrer '’énoncé du théoréme pour deux cas spéciaux, d'une
part le cas oul f est une fonction qui ne s’annule pas pour |s| <R, et d’autre part le cas ol
f estde la forme f(s) =s—{ avec |{| <R.

On commence avec le premier cas. Comme on suppose que f ne s’annule pas dans le
disque |s| < R, le logarithme log f (s) est bien défini et holomorphe au voisinage du disque
de rayon R. Par la formule de Cauchy on a alors

2mi s 27

27
log £(0) = —— f log /() 4 — if log f (Re'*) d6,
|s|=R 0

en en prenant la partie réelle aux deux cotés,

2r

|log f(0)| = %J log|f(ReiQ)| de.

0

Ensuite on considere le cas ou f est donnée par f(s) =s—{ avec |{| < R. On écrit cette
fonction comme le produit f = f; f, avec

Ao =28 o pe) =R T,
R2—{(s

et alors on a

1 2n 1 2n 1 271
ﬂf log|f (Re'")|d6 = ﬂf log|f, (Re)] 6 + ﬂf log| fo(Re)] d6.
0 0 0

On peut évaluer la premiere intégrale a droite facilement en notant que |f;(s)| = 1/R
pour [s| =R. En ce qui concerne la deuxieme, observons que f, ne s’annule pas dans |s| <
R, ce qui nous permet d’appliquer ce qu’on a déja montré au-dessus. Cela nous donne

R

_)

4

et conclut la preuve. O

2n
1 .
e f log|f(Re‘9)| d6 = —1logR + |log f,(0)| = | log f (0)| + log
0

Le théoréme suivant est essentiellement un corollaire simple de la formule de Jensen.

Théoréme 7.13. Soit € > 0. Soit f une fonction entiére d’ordre a. Alors pour tout R > 1,

Z 1 <<Ra+£’

lp|<R

otl la somme va sur tous les zéros de f de module borné par R, comptés avec multiplicité.
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Preuve. Sans perte de généralité on peut supposer que f (s) # 0, car sinon on peut rempla-
cer f(s) par la fonction f(s)s™™ pour un entier m convenable. De plus, on peut supposer
que f ne s’annule pas sur le cercle de rayon 3R, car sinon on remplace R simplement
par R+ 6 avec unréel 6 € (0,1].

Par la formule de Jensen et par le fait que f est d’ordre a, il suit alors

21
3R 1 .
>i1< > log— =—log|f(0) + —J log |f (3Re'?)| d6 < R**,
lpl 2m ),
lpI<R IpI<3R
ce qui est déja l'estimation que I'on veut montrer. O

Une conséquence immédiate de ce résultat est que si f est une fonction entiére d’ordre a,

alors la somme )
P
= 1+ |plote

est convergente pour tout € > 0, oll la somme va comme d’habitude sur tous les zéros
de f, comptés avec multiplicité.
Maintenant on a tous les outils afin de prouver le résultat principal de cette section.

Théoréme 7.14 (Factorisation de Hadamard). Soit f une fonction entiére d’ordre au plus 1.
On pose k = 0 si f(0) # O, et sinon on définit k comme Uordre du zéro en O de f. Alors il
existe des constantes A, B € C telles que

f(s) = eMtBssk l_[(l — %)e;, (7.20)
P

ol p parcourt U'ensemble de zéros de f non nuls et ott le produit converge uniformément sur
les compacts de C.

Preuve. Sans perte de généralité on peut supposer que f(0) # 0.
Soit K un compact de C. Le nombre de zéros de f contenu dans K est fini, et on a

S s 1
1——Jer =1+0|
p el
uniformément pour tout s € K et tous les zéros p ¢ K. Par la remarque suivant le théo-
réme|[7.13] il suit que le produit

P(s) := l_[(l — %)eﬁ

P

converge sur les compacts de C et définit une fonction entiére.

En particulier, le quotient f (s)/P(s) est une fonction entieére qui ne s’annule pas sur C.
On montre maintenant que cette fonction est d’ordre au plus 1. Au vu du lemme
cela montrera le théoreme.

Comme on a déja par ’hypothése une borne pour f(s), ce qui est nécessaire est une
borne inférieure pour P(s). Soit £ > 0, et supposons pour le moment que R soit un réel
positif tel que

1 .
R—|pl| > W pour tout les zéros p. (7.21)

On estime P(s) sur le cercle |s| =R.
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Pour les zéros p tels que |p| <R/2, on a

-3y

Jel
est par conséquent on a pour R suffisamment grand,

s 1 1
l_[ (1 - E)e > exp| — Z o > exp(—R”g; |P|H5) > exp(—R'*%).

R R
lol<% lol<%

EX
)

R
> exp _H ,

B

(7.22)
Si p est un zéro tel que |p| > 2R, alors un utilise I'inégalité

—clzl? 1
|(1—C)e€}>e < pour |¢] < >
qui est vraie si la constante c est choisie suffisamment petite. Alors

l_[(l—i)e% > exp| —c Z ﬁ > exp —cRHEi L > exp(—R'"%).
b e 2,5

lpl>2 lo|>2R
(7.23)
Finalement, pour les zéros p tels que R/2 < |p| < 2R, on utilise la condition (7.21)),
1—=

qui méne a
(-2
P p

et comme il y a au plus O(R'*¢) zéros p tels que R/2 < |p| < 2R, il suit que

_IR—1pl 1
2R 2e2R3’

>e2

>e

1_[ 1— i)e% > (2¢2R*) R > exp(—R'*). (7.24)

E<lpl<2r

En somme, en rassemblant les estimations (7.22)), (7.23) et (7.24), on obtient

|P(s)| > exp(—3R'**¢) > exp(—R'"*")
pour R suffisamment large. Comme f est d’ordre 1, il suit que

.@ 1+4¢ —
PG) < exp(R ) pour |s|=R. (7.25)

Notons maintenant que grice au fait que la somme
S
= lpl?
est convergente, il est possible de trouver une suite de réels {R;};cy telle que

lim R; = o0 et IRjs1—R;| <1 pourtout j€EN.

j—oo

En appliquant l'estimation (7.25]) pour les valeurs de cette suite et en utilisant le principe
du maximum, il suit que

'@ 1+4¢ 1+5¢
e < exp((Js] + 1)) < exp(|s[**>%),

et on voit enfin que f(s)/P(s) est en effet une fonction d’ordre au plus 1. O
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On avait déja vu quelques exemples de factorisation de Hadamard de fonctions en-
tieres. En particulier, la représentation donnée au théoréme [7.1| n’est rien d’autre que
la factorisation de Hadamard de l'inverse de la fonction gamma. Aussi la formule bien

connue
N oo
sin(s) _l—[ 1 52
s n2

(=1

est simplement la factorisation de Hadamard du sinus (cf série 11.1). Dans la section
suivante on étudiera la factorisation de Hadamard &(s).

7.4 La factorisation de Hadamard de &(s)

Aussi la fonction £(s) posséde une factorisation de Hadamard. Afin de pouvoir consta-
ter les résultats de maniere simple, dans tout la suite on adopte la convention que la
variable p dans des sommes et produits comme par exemple

Z(...) ou l_[(...)
o P

dénote seulement les zéros non triviaux de {(s), compté avec multiplicité.
Théoréme 7.15 (Factorisation de Hadamard de £(s)). On a
S s
§(s)=ele_[(1——)eP, (7.26)
o P
oll B est une constante complexe.

Preuve. Comme la fonction £(s) est entiere, afin d’appliquer le théoréme [7.14] il faut
seulement vérifier qu’elle est d’ordre au plus 1. Grace a '’équation fonctionnelle (7.17), il
suffit d’estimer la fonction &(s) dans le demi-plan Re(s) > 1/2. Par le corollaire ona

F(i) < eblloglsl.
2
Afin d’estimer {(s), on utilise sa représentation comme intégrale ([6.5) et on obtient

(s—1)¢6) < Isl*. (7.27)

Les autres facteurs se bornent de fagon triviale, et on voit qu’en effet &(s) est une fonction
d’ordre au plus 1.

Le théoréme[7.14| nous dit qualors £(s) s'exprime comme le produit infini sauf
qu’il y a encore une constante A dans 'exposant. Mais en notant que

£(0) = £(1) = lim(s — 1){() =1,
il suit que A=1 et le théoréme est montré. O

Il saverera que les zéros non triviaux de {(s) jouent un role pertinent pour la répartition
des nombres premiers. On finit ce chapitre avec quelques résultats simples sur ces zéros,
qui sont des conséquences de la théorie développée dans la section précédente.

Jusqu’ici on ne sait méme pas s’il existe des zéros non triviaux. Le théoréme suivant
montre qu’en fait il en existe un nombre infini.
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Théoreme 7.16. Lensemble des zéros non triviaux de {(s) est infini. De plus, la somme
1
> (7.28)
= lpl°

est convergent pour tout o > 1, mais divergente pour o = 1.

Preuve. Le fait que la somme ([7.28) converge pour o > 1 est une consequence du Théo-
réme Supposons qu’elle converge aussi pour o = 1. En utilisant I'inégalité

|(1—¢)ef| < e pourtout ¢eC,
il suit que

E(s) < exp(Cls|) avec C:=(|B|+22l%|).
el

Par contraire, on a pour s réel et suffisamment large

slogs
E(s)> exp( & )
4
Alors la somme (7.28) doit étre divergente pour o = 1, et par conséquent il doit exister
un nombre infini des zéros non triviaux de {(s). O

Une conséquence de ce résultat est que la limite

lim 1 (7.29)

X—0Q0 p

est convergente, car p est un zéro non trivial de {(s), alors sa conjugué p l'est aussi, et
on a R 5
e
P <

1 —
P el T pl?
>
o P
pour désigner la limite (7.29), mais il faut toujours se souvenir cette somme ne converge
pas absolument et que sa valeur dépend de I'ordre de la sommation.
Maintenant, on peut aussi évaluer la constante b en termes des zéros non triviaux

de {(s). On commence par prendre la dérivée logarithmique sur les deux cotés de (7.26),
ce qui méne a

+

1
0< —
Jol
On utilisera la notation

5—/(s)—B+Z(L+1) (7.30)
3 —\s—p pJ '
Par I'équation fonctionnelle de la dérivée logarithmique de £(s), qui prend la forme
¢ ¢
S =-2(01-s),
g <
on a aussi . . .
=3+ 1) o
3 ; l1-s=p p
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En comparant (7.30) et (7.31), on obtient 'expression suivante pour la constante B,

1 1 1 1 1
e

P

ol on a utilisé le fait que si p est un zéro de {(s), alors 1 — p l'est aussi.

Ensuite, il sera nécessaire d’avoir une estimation pour le nombre de zéros non triviaux
avec partie imaginaire bornée par une constante. Cela se fera en utilisant la formule de
Jensen, et on aura besoin d’une estimation pour {(s), donnée dans le lemme suivant.

Lemme 7.17. Il existe une constante k > 0 telle que
{s) <t
pour tout s € C dans la région o > —5 et |t| > 1.

Preuve. Pour ¢ > 2 on a bien évidemment {(s) < 1. Comme on avait déja vu en (7.27),
onapourl/2<oc <2,
L(s) < |s]? < t2.

Finalement, pour —5 < ¢ < 1/21a borne découle de '’équation fonctionnelle et des bornes
déja montrées. O

On désigne par N(T) le nombre de zéros non triviaux de {(s), comptés avec leur mul-
tiplicité, qui ont une partie imaginaire bornée par un réel T > 0. En autres mots,

NTD:= > 1
p: [Im(p)I<T

Le lemme suivant donne une estimations trés simple de N(T).

Lemme 7.18. Onapour T = 2,
N(T)=N(T—1)<1logT et N(T)< TlogT. (7.32)
Preuve. Soit 7 :=2+1iT, et soit r € [3,4] tel que
{(t+re*™®)#£0 pourtout 6€R.

Par la formule de Jensen et Lemme ona

271
1 .
E log r =—f log|§(r+re‘9)|d9—loglrl<<1ogT.
p:lp—r|<r |p_T| 2m 0

En observant que la distance entre le point 7 et tous les zéros p avec [Imp —T| < 1 est
bornée par +/5 < 3, on obtient

-1

N(T)—N(T—l)s(log%) > log—

o lp—7|<V5 |p B T|
r O\ r
< (log —) Z log < logT,
p:lp—7|<r |P - T|

montrant la premiere estimation en (7.32)). La deuxiéme en est une conséquence immé-
diate. O
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Chapitre 8

Le théoreme des nombres
premiers

Maintenant on a tous les outils pour donner la preuve du théoréme des nombres pre-
miers. En résumé, 'idée est d’utiliser la formule de Perron pour écrire la fonction y(x)
comme une intégrale complexe de la forme

c+ioco o,

U’(X)=—L.f a:—(s)x—sds pour x &7,
2mi c—ioco C S

avec ¢ > 1, et alors de déplacer la ligne d’intégration a gauche a travers la ligne Re(s) = 1.
Ensuite on déplace la ligne d’intégration a gauche et finalement laisse ¢ tendre vers l'infini.
Le résidu en s = 1, que 'on rassemblera dans cette procédure, donnera le terme principal
de la formule asymptotique.

Mais on peut aussi aller en dehors, et laisser ¢ tendre vers I'infini en rassemblant tout les
autres poles de ¢’/ (s). La formule qui résulte de cette procédure, méne non seulement
a une formule asymptotique pour ¥ (x) plus forte, mais en plus elle montre de maniére
plus claire le lien entre la répartition des nombres premiers et les zéros de {(s) . Cette
formule est connue comme la formule explicite.

8.1 La dérivée logarithmique de {(s)

Comme on a déja vu, la série de Dirichlet associée a la fonction de von Mangoldt A(n)
est donnée par
/
L&) =56,
¢
ce qui nécessite I'étude de la dérivée logarithmique de {(s) dans un certain détail, qui est
le but de cette section.

Commencons par mentionner que la dérivée logarithmique de {(s) a un pole simple
ens =1 de résidu —1 qui découle du pdle de {(s), et que tout les autres pdles se trouvent
exactement aux points ot {(s) s’annule. Afin de pouvoir effectuer I'idée décrite au-dessus,
il est pertinent de limiter la zone ol on peut trouver ces poles. On fera cela dans la sec-
tion suivante, mais ici on s’intéresse plutdt au comportement général de ¢’/ (s) dans les
différentes régions du plan complexe.
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En ce qui concerne le comportement dans le demi-plan Re(s) > 2, il n y a pas beaucoup
a dire, car on peut y borner cette fonction simplement par

4 < o logn
— < < 1. 8.1
C(S)‘ ; 8.1)

n2

Par I’équation fonctionnelle cela nous donne aussi une borne dans le demi-plan Re(s) <
—1, puisqu’en prenant la dérivée logarithmique aux deux cotés de (7.15) et en utilisant
le théoréme|7.3] on voit que

/ 1—!/ /
%(1 —5)=log2m— =() + gtan(§) -5
et par (8.1) et la formule de Stirling, on obtient alors la borne

/

Z(S) < log|s], (8.2)
qui est valide dans la région donnée par les conditions
1
Re(s)<—1 et |[s+2n|> 2 pour tout n €N.

Il reste a déterminer le comportement dans la bande —1 < Re(s) < 2, ce qui est en fait
le cas le plus important.
On donne le résultat dans le lemme suivant.

Lemme 8.1. On q, pour touts =c +it€Cavec—1 <o <2et|t| =1,

/
1
TO= >, = +0(+]logs).
p: [Im(s—p)|<1

Preuve. Notons d’abord qu’a cause de la relation

g _ ¢
=()==(s) pour seC,
¢ ¢
il suffit de traiter le cas t > 1.
En utilisant la formule intégrale de Cauchy, on peut prendre la dérivée des deux coOtés
de (7.10Q), et on obtient la formule asymptotique

F—(s)=logs—i-0(l). (8.3)
r Is|

Ensuite, on prend la dérivée logarithmique des deux c6tés de (7.16)), et par (7.30) et (8.3),
on voit que

¢ 1 1
Z(s)_;(s—p + p)+O(log«t).

Ici on utilise cette formule avec s = 2 + it, et apres le soustraire de la méme expression

(?)

/ 1 1
Z(s)=;(5_p —2+it_p)+0(logt). (8.4)
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Pour tous les p avec |[Imp —t| < 1,ona
1
dDo———< > 1<logt, 8.5)
|2 +it —p|
p: [Imp—t|<1 p: |Imp—t|<1
ol on a utilisé le théoréme En ce qui concerne les p avec |Imp —t| > 1, notons que
ls—p|=[t—Impl|.

Alors
1 1 2—0 1

— = < .
s—p 2+4it—p (s—p)2+it—p) |[t—Imp]?
et pour tout n € Z \ {0,—1},

1 1 1 log|t+n
S (A-gi)e ¥ < loslcrn)
s—p 2+4it—p |t —Im p|2 n2

p:n<Imp—t<n+l p:n<Imp—t<n+l

ol on a utilisé encore une fois le théoréme En sommant sur n, cela nous donne
I'estimation

1 1
( — - ) < logt. (8.6)
p: | Imp—t|>1 S—pP 2+1t_p

Le résultat suit en combinant la formule (8.4) avec les estimations (8.5) et (8.6). O

8.2 La formule explicite

Ici on se met a déduire rigoureusement la formule explicite déja mentionnée au-dessus.
Afin de la formuler de maniére convenable, définissons

P(x) si. x¢Z,
1/)(x)—¥ si x €Z.

Po(x) := {

Alors la formule explicite est donnée dans le théoréme suivant.

Théoreme 8.2 (Formule explicite). On a, pour x > 2,

xP g 1 1
Polx) =x —Z —— g—(0) - = log(l - —)
p < 2 x2
P
Afin de prouver le théoreme des nombres premiers, il sera avantageux de travailler
plut6t avec une formule un peu différente, oll on n’aura pas a faire avec une série qui ne
converge que conditionnellement. Le théoreme suivant est une sorte d’approximation a
la formule explicite, qui est plus simple a utiliser, et a partir duquel on obtient aussi le
théoréme [8.2] comme un corollaire immédiat.

Théoreme 8.3 (Formule explicite pour 1 (x), version utile). On a, pour x,T > 2,

xP !

Po)=x— . ——2(0)—%1og(1—)%)+R(x,T), 8.7)

p:|Imp|<T

ot le terme d’erreur R(x, T) est borné par

R(x, T) <K %(long)2 + (log x)min(l, ﬁ),

avec
(&) :=min{|§—pe| :peP, LN, 57&p4}.
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Preuve. On commence en utilisant le théoréme avec ¢ = 1+ (logx)™!, ce qui nous

donne
c+iT C/

— xA(n)
_+O .
e T (; ne(1+ Tllog(%)l))

A partir d’ici, la preuve se déroulera en deux étapes. D’abord on estimera le terme d’erreur
en montrant que

Yo(x) =

0 c 2
A 1 1
Z xX*Aln) K x(log x) +min{logx, X208 X } (8.8)
p— n5(1+T|10g(§)D T T{x)
Ensuit, on montrera que
1 c+iT C
- 2 s = 8.9
27 ) _ip C( $)x S

Pour montrer (8.8)), on sectionne la somme en trois parties,

D) Sa= L (L) et Bi= >0 (L)

neN neN neN
né(x/2,2x) ne(x/2,x] ne(x,2x)

Dans la somme ¥; on a |log(x/n)| > 1, ce qui nous permet de la borner simplement par

<= Z Aln)

xlogx

<

ol la derniére inégalité suit du fait que ¢’/ (s) posséde un pdle simple en s = 1.
Afin d’estimer la deuxiéme somme 3,, on pose

Xg i= max{p[ :peP, (€N, p' <x}.

Notons que 'on a A(n) = 0 pour tout x, < n < X, et que par conséquent on peut supposer
que x/2 < x, < x, car sinon la somme vaudrait 0. Pour x/2 < n < x, on a

log(f) > log(ﬁ) = —log(l _ o —n) > xo—n,
n n Xo Xo

Z x°A(n) Xo A(n) < x(log x)?
n(1+Tllog())) T Xo—n T

n<x,

et alors

x/2<n<xg

On l'estime le terme a n = x, en observant que

log(i)—log(l— x—xo) = X% = @,
X x

x x
par
x“A(xg) ) { x log x }
< minylogx, .
xo°(1 + T|log(x/xo)[) T(x)
En somme, on obtient
x(log x)? _ x log x
K T +m1n{logx, 00 }
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La méme borne s’applique aussi a la somme 35, comme on peut montrer de fagcon
similaire. En résumé, ces estimations nous donnent (8.8)).
On prouve maintenant (8.9). Observons que si w est un zéro de {(s), alors

w

s (F05)- 5

g (F07)= 50 « ne(foT )=

Sans perte de généralité on peut supposer que T # Im p pour tous les zéros non tri-
viaux p de {(s). Soit U € N un entier impair. Par le théoréme des résidus, on a

De plus, on a

1 cHiT ,,, X P x_zn
L e Y e,
mfor €S i<t P n<oj2 M
ol on a posé
1 '
I :=— g—(s)—ds,
2mi ) g s

et oll on note y; le chemin de ¢ —iT a —U —iT, v, le chemin de —U —iT a —U +iT, et y5
le chemin de —U +iT,c +iT.
Lintégrale I, est la plus simple, car on a par (8.2),

T -U
L < f logUx— dt K TlogU.
_r U UxU

L'estimation des deux autres intégrales est plus difficiles, car les lignes d’intégrations
peuvent passer trop pres des poles de £’/ (s). Afin d’éviter cette situation, notons que par
le théoreme[7.18]il y a au plus O(log T) zéros p dans I'intervalle [T—1, T +1]. En particu-
lier, il est toujours possible de trouver T € [T—1, T +1] qui satisfait la borne |Im p—T| >
(log T)™! pour tous les zéros p. Par conséquent, en prouvant la formule (8.7), on peut
toujours supposer que T satisfait la borne

1
[Imp—T|> ——, (8.10)
log T

car sinon on simplement remplace T par T’ en estimant 'erreur qui se produit a la c6té
droit de (8.7) par
Z xP < xlogT
o

p: | Imp—T|<1 p

Par le lemme|8.1|on a pour tout s = 0 +iT, avec —1 < o < 2 I'estimation

1
< log Tn + Z — < (lOg Tn)zy

%(s)

p: | Imp—T,|<1

ol on a utilisé encore une fois le théoréme Alors

—1+iT —U+iT,
"(log T,)? "1
I+ f (08 T)* o1 4s 4 f loglsl, ) 4o
C

+T, T, —1HiT, Is|
logT )? (€ log T,)?

<<(ogn)f o < Jo8T)* _x

T, T, logx

—0Q
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Notons que tout ces estimations sont uniformes en U. Alors en laissent U tendre vers
l'infini, on voit que

c+iT,

211_1 . ?(s)—sds——x+ Z o +O(—(long )2)

lpl<T P n=1

ce qui n’est rien d’autre que la formule pour le cas T = T,, si on note que
BT,
b'e 1 1
—=—=logl1—— ).
2 g( x?2 )

Cela conclut la preuve. O

8.3 La zone de non-annulation

La formule explicite nous a montré comment la répartition des nombres premiers est
liée étroitement aux zéros de la fonction zéta de Riemann. Afin de pouvoir déduire une
formule asymptotique pour (x), il est ainsi indispensable de connaitre la position des
z@ros ainsi précisément que possible. Le but de cette section est de déduire une partie de
la bande critique, ot {(s) ne s’annule pas.

La base de tout ce qu’on dira sur les zones de non-annulation est 'identité élémentaire
suivante, qui au premier abord apparait insignifiante :

3+4cosa+cos2a=2(1 +cosa)2 >0 pourtout a€R (8.11)

Dans un premier temps, on montre, en utilisant cette identité, que {(s) ne s’annule pas
sur la ligne Re(s) = 1.

Théoréeme 8.4. On a {(1+it) # O pour tout t € R\ {0}.

Preuve. En écrivant {(s) comme produit d’Euler et en prenant ensuite la valeur absolue,
on obtient pour o > 1,

|C(o +it)| = eXp(ZZ COS(f;zl:gp) )

p (=1

Par I'identité (8.11), il suit que

LoV 1C(o +it)|C (o + 2it)] = exp(zz 3+ 4C°Sp°2j COSZ“) 1. (8.12)
p (=1

Supposons, en raisonnant par 'absurde, que {(s) aurait un zéro en s = 1+ it,. Comme
le pole de {(s) en s = 1 est simple, il suit que

lim (o)’1¢(o +itg)*¢ (o +2itp)| = 0
o>1

Mais cela contredit 'inégalité (8.12]), que 'on vient de montrer. O

Le résultat précédent est déja suffisant pour déduire le théoreme des nombres premiers
dans sa version la plus faible. Mais en utilisant la théorie développée dans les sections
précédentes, il est possible de déduire une zone de non-annulation considérablement
plus large.
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Théoreme 8.5. Il existe une constante C > 0 telle que

Cc

Rep<l———
P 1+log|Imp|

pour tout les zéros non triviaux p de {(s).

Preuve. On commence avec 'observation, que pour tout s € C,

1 cos(tlogn) isin(tlogn)

ns ne ne

En utilisant cela en combinaison avec (8.11)), on obtient I'inégalité

Re(—4%/(o +it)— %/(a + 2it)— 3%(0))
_ i A(n)(4cos(tlogn) + cos(2tlogn) + 3) >0
n=1 ne 7

qui est valide pour tout o > 1,
Soit py = fB + iy, un zéro non trivial de {(s). Si 1 < o < 2, on a par le lemme
I'approximation suivante pour —¢’/{ (o +it),

/
1
_ S o tit)=— >, ——+0(logt), (8.13)
¢ p: [ Im(s—p)I<1
et comme Re(s — p) > 0 pour tout zéro non trivial p, il suit que

1 Re(s —
NI
s=p Is—pl

ce qui nous permet d’obtenir des estimations pour {’/{ (o +it) en simplement supprimant
des termes de la somme sur p en (8.13).
En supprimant tous les termes sauf p = p,, on obtient

/
Re(—C—(O' +iYo)) < — L +cloglygl pour 1<o <2, (8.14)
¢ o= Po

pour une constante ¢ > 0 suffisamment large. Supprimer tous les termes nous donne
C/
Re(—z(cr + 2iy0)) < cloglyol pour 1<o<2. (8.15)

Finalement, comme {’/{(s) a un p6le simple en s = 1, on a aussi

/
1
—=(o) < —1+c pour 1<o <2, (8.16)
o —

¢

si la constante ¢ > 0 est choisie suffisamment large.
On groupant ces trois estimations et en utilisant (8.11)), il suit que pour tout 1 < 02,
/
0< Re(—4g—
¢
3

c—1 o—p

(0 +iro)— %(o ; ZiYo)—3%/(U))

+ Clog(y, + 2),
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pour une constante C > 0 suffisamment large. On utilise cette inégalité avec

1)
c=1+——0
log(yo +2)

ol & > 0 est une constante positive, et apres quelques transformations simples on obtient

L5 45
log(y,+2) (3+Cd)log(y,+2)

Bo<1

Le théoréme suit en posant § = (3C)L. O

8.4 Preuve du théoréme des nombres premiers

Ayant montré la formule explicite et disposant d'une zone de non-annulation sous la
forme du théoréme[8.5] il est maintenant chose facile d’obtenir une formule asymptotique

pour Y (x).

Théoréme 8.6. Il existe une constante ¢ > 0 telle que
YP(x)=x+ O(xe_c‘/ log").

Preuve. On peut supposer que x € N. Par le théoréme [7.18] il suit que
1 logn
Z — <L Zi < (log T)>.
p:|Imp|<T |p| n<T n

En utilisant cette borne et la zone de non-annulation montrée dans la section précédente,
il suit que

xP
— <L xl_ﬁ(log T)?.
p: |[Imp|<T

En mettant cela dans la formule explicite et en observant que (x) > 1, on obtient
Y(x)=x+ O(xl_é(log T)? + %(logx)z),

et le théoréme suit avec T = eV 108*, O

De ce résultat, on peut obtenir sans aucune peine une formule asymptotique pour 7t(x).
Avant de donner le résultat, on définit la fonction

. ©ae
Li(&) := L TogZ’

qui est connue comme le logarithme intégral.

Théoréme 8.7 (Théoréme des nombres premiers). Il existe une constante ¢ > 0 telle que

m(x) = Li(x) + O(xe_c‘/@).

70



Preuve. Par , on sait que
0(x)=x+ O(xefcv logx).

Par la formule sommatoire d’Abel, on a

CICO I I
)= fogn L/z (ogye
x x 1 B 56 log&
_ d cy/logx
log x +L/2(log£)2 §+O(xe " 3/2 (1085)25 5)

En ce qui concerne le terme principal, on utilise l'intégration par parties,

+ J 1 dg) = Li(x) + 0(1).
32 Japlogé

b'e * 1 X 3
log x +J.3/2(log§)2 e = log x +( log&

En ce qui concerne le terme d’erreur, on observe que la fonction & — Ee V98¢ est mo-
notone, et alors

—c4/logé
ge gy dE < xe™V log"f o5 dE < xe ™V logx
372 (log&)*E 1» (l0g£2E gE) <
Cela conclut la preuve du théoreme. O

Notons que pour tout N € N, on a 'approximation suivante pour le logarithme intégral,

N—-1

. x
Li(x) = logx ; (logx)" ((logx)N )

Par cette formule et le théoréme il suit aussi que

m(x) ~ ,
log x

ce qui est le théoréme des nombres premiers dans sa version le plus faible.
On pourrait améliorer le terme d’erreur, si on savait plus précisément ou les zéros non
triviaux de {(s) se trouvent. Le résultat suivant précise cela.

Théoreme 8.8. Soit 0 < 6 < 1. Si Rep < 6 pour tous les zéros p de {(s), alors
P(x)=x+ O(xe(logx)z).

A linverse, si(x) = x + O(xe), alors Re p < 0 pour tout zéros p de {(s).

Preuve. SiRep < 0, alors |xP| < x%, et comme avant on obtient

P(x)=x+ O(xe(log T) + M + logx),

et le premier énoncé suit avec T = x'79.
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Pour montrer le deuxiéme énoncé, on écrit la dérivée logarithmique de {(s) en sommant
par parties comme

S )=s f P(EEdE,
¢ 1
et en utilisant ’hypothése,

o s [TRE
_Z(s)—s_l-i—s =

dg,

olt R(&) := (&) — £. Comme R(§) < &P, lintégrale a droite converge absolument
pour Re(s) > 6. Alors la seule singularité de {’/{ (s) se trouve en s = 1, et par consé-
quent ¢(s) ne peut pas avoir de zéros p avec Rep > 6. O
Par la symétrie des zéros, le mieux est O(x% )
Théoréme 8.9. Lhypothése de Riemann est correcte si et seulement si
P(x)=x+ O(x%”)

pour tout € > 0.
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