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Chapitre 1

Introduction

1.1 Le théorème des nombres premiers

Le sujet principal de ce cours sont les nombres premiers, qui sont les nombres naturels
qui admettent exactement deux diviseurs distincts positifs. Leur importance extraordi-
naire est due au fait qu’ils forment, dans un certain sens, les briques élémentaires de la
structure multiplicative des nombres naturels.

Théorème 1.1 (Théorème fondamental de l’arithmétique). Tout nombre naturel s’écrit
comme un produit de nombres premiers d’une façon unique, à l’ordre près des facteurs.

Une question qui se pose très naturellement est la suivanta : combien de nombres pre-
miers existe-t-il ? La réponse à cette question était déjà connue dans l’antiquité grecque.

Théorème 1.2 (Euclide). Il existe un nombre infini de nombres premiers.

Preuve. Supposons par l’absurde qu’il existe un nombre fini de nombres premiers p1, . . . , pr .
Mais alors aucun de ces nombres premiers ne divise le nombre p1 · · · pr +1. Il faut que ce
nombre soit divisé par un nombre premier différent, ce qui contredit notre hypothèse.

En vue de ce résultat, spécifions la question précédente comme suit : comment sont
distribués les nombres premiers ? Au premier abord, si on regarde par exemple le début
de la suite des nombres premiers, ils semblent être distribués de façon complètement
aléatoire :

2, 3,5, 7,11, 13,17, 19,23, 29,31, 37,41, 43,47,53, 59,61, 67,71, 73,79, . . .

Néanmoins, on peut se demander s’il existe une loi de nature plutôt statistique, qui décrit
la répartition des nombres premiers.

Une façon d’étudier cette question est de considérer la fonction π(x), qui compte le
nombre des nombres premier inférieurs ou égaux à un réel x :

π(x) := #{p ≤ x : p un nombre premier}

Alors, quelle est une bonne approximation deπ(x)? Et quel est son comportement asymp-
totique quand x →∞?

Si on regarde π(x) pour quelques valeurs larges de x , on finit par avoir l’impression que
la densité des nombres premiers décroît de plus en plus lorsqu’on s’éloigne de 1. Vers la fin
du XVIIIe siècle, A.-M. Legendre et, indépendamment, C. F. Gauß donnaient des formes
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x π(x) π(x)/x
1000 168 0,168
2000 303 0,1515
5000 669 0,1338

10000 1229 0,1229
20000 2262 0,1131
50000 5133 0,10266

100000 9592 0,09592
200000 17984 0,08992
500000 41538 0,083076

1000000 78498 0,078498

TABLE 1.1 – Quelques valeurs de π(x) jusqu’à x = 1000000

précises à cette observation en formulant la conjecture suivante pour le comportement
asymptotique de π(x) :

lim
x→∞

π(x)
x/ log x

= 1. (1.1)

Néanmoins, aucun de ces deux mathématiciens ne fut capable de produire une preuve de
cette conjecture.

Les premières avancées sur cette question vinrent d’une direction plutôt inattendue et
concernaient initialement un problème assez different. Étant donnés des entiers a et q ≥
1, on peut se poser la question : au vu de l’infinité des nombres premiers, existe-t-il aussi
une infinité de nombres premiers dans la progression arithmétique

a, a+ q, a+ 2q, a+ 3q, a+ 4q, . . . .

Clairement, il est nécessaire de supposer que a et q sont premiers entre eux pour que cela
soit le cas. Mais à condition que ceci soit satisfait, on pourrait attendre, au vu de la répar-
tition apparament aléatoire des nombres premiers, que toute progression arithmétique en
contient un nombre illimité.

Bien qu’on puisse montrer ce fait pour quelques cas spéciaux par des méthodes élémen-
taires (par exemple si q = 4), le cas général se révèle fortement plus difficile à prouver.
C’est finalement le mathématicien P. G. L. Dirichlet en 1841 qui put résoudre le problème
en toute généralité.

Théorème 1.3 (Théorème de la progression arithmétique). Soient a et q ≥ 1 des entiers
premiers entre eux. Alors il existe une infinité de nombre premiers qui sont congrus à a
modulo q.

En montrant ce résultat Dirichlet introduisit une multitude d’idées nouvelles, qui se
révèrent très influentes dans les années et decennies à venir, notamment aussi au regard
de l’étude de la répartition des nombres premiers.

Plus d’un demi-siècle après les premières conjectures autour de la fonction π(x), P. L.
Tchebychev établit en 1852 entre autres le théorème suivant, que l’on peut voir comme
un premier pas en direction d’un preuve de la conjecture (8.7).

Théorème 1.4 (Tchebychev). Il existe des constantes c2 > c1 > 0 telles que pour tout x
suffisamment large,

c1
x

log x
≤ π(x)≤ c2

x
log x

.
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En fait, il montra cette inegalité en donnant les valeurs explicites c1 = 0, 92129 et c2 =
1,10555. Même si ses méthodes étaient encore loin de produire une formule asymptotique
pour π(x), ce résultat confirma toutefois que l’ordre de grandeur conjecturé était correct.

La situation changea radicalement quelques années plus tard en 1859, quand B. Rie-
mann publia son article célèbre Ueber die Anzahl der Primzahlen unter einer gegebenen
Grösse 1. Dans ce papier de huit pages (le seul qu’il ait jamais publié sur la théorie des
nombres) il considère une certaine fonction complexe ζ(s), la fonction zêta de Riemann
comme elle est connue de nos jours, et il montre comment les propriétés de cette fonc-
tion sont liées étroitement avec la répartition des nombres premiers. Bien qu’il n’était pas
capable de donner des preuves pour les énoncés les plus importants de son article, ses
idées ont ouvrirent la porte à une preuve de la conjecture (8.7) et influencèrent de ma-
nière décisive le développement de ce qu’on appelle aujourd’hui la théorie analytique des
nombres.

En 1895, H. von Mangoldt montra rigoureusement les énoncés principaux de cet article,
qui étaient constatés initialement sans preuve. À partir de ces travaux, la conjecture (8.7)
fut finalement démonstrée un an plus tard en 1896 indépendemment par J. Hadamard et
Ch.-J. de la Vallée Poussin, presque un siècle après qu’elle fut formulée pour la première
fois.

Théorème 1.5 (Théorème des nombres premiers). On a

lim
x→∞

π(x)
x/ log x

= 1.

Le but principal de ce cours sera d’introduire les définitions et méthodes de base de
la théorie analytique des nombres, afin de montrer ensuite le théorème des progressions
arithmétiques et le théorème des nombres premiers.

1.2 Notation

Bien qu’on introduira toute les notations nécessaire, on dit quelques mots sur les nota-
tion utilisées dans ce qui suit. On suit la convention que l’ensemble des entiers naturels
ne contient pas le zéro, c’est à dire

N= {1,2, 3, . . .}.

La variable p sera reservée sans exception pour noter un nombre premier, et on utilisera
parfois la notation P pour noter l’ensemble des nombres premiers,

P := {p ∈ N : p premier}.

On suivrat l’usage usuel dans la théorie analytique des nombres, que le plus grand
commun diviseur de deux entiers a et b soit noté par (a, b),

(a, b) :=max{d ∈ N : d | a, d | b}.

La partie entière d’un nombre réel x est définie comme

[x] :=max{a ∈ Z : x − 1< a ≤ x}.

Similairement on définit la partie fractionelle comme {x} := x − [x].
1. Sur le nombre de nombres premiers inférieurs à une taille donnée
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Chapitre 2

Fonctions arithmétiques

2.1 Définition

On commence avec la définition simple suivante, qui se révèlera quand même très utile
et qui nous accompagnera tout au long de ce cours.

Définition. Une fonction arithmétique est une fonction à valeurs complexes de l’ensemble
des entiers naturels.

On note A l’ensemble des toutes les fonctions arithmétiques. Voici quelques premiers
exemples de fonctions arithmétiques que l’on rencontrera souvent :

• Fonction identité : id(n) := n

• Fonction constante égale à 1 : ε(n) := 1

• Fonction indicatrice des nombres premiers : δP(n) := π(n)−π(n− 1)
• Logarithme : log(n)
• Fonction nombre de diviseurs : τ(n) := {d ∈ N : d | n}
• Fonction phi d’Euler : ϕ(n) := {a ∈ N : 1≤ a ≤ n, (a, n) = 1}
• Fonction nombre de diviseurs premiers distincts : ω(n) := {p ∈ P : p | n}

Bien sûr avec le temps on fera la connaissance de beaucoup d’autres fonctions arithmé-
tiques importantes.

2.2 Fonctions multiplicatives

Les fonctions arithmétiques qui sont compatibles avec la structure multiplicative de N
jouent un rôle particulièrement important, qui mérite sa propre définition.

Définition. Une fonction arithmétique f est appellée multiplicative, si elle n’est pas identi-
quement nulle et si

a(n1n2) = a(n1)a(n2) (2.1)

pour tout n1, n2 ∈ N tels que (n1,2 ) = 1. Elle est appelée complètement multiplicative si elle
satisfait la condition (2.1) pour tout n1, n2 ∈ N.

On note que pour tout fonction multiplicative f , on a nécessairement f (1) = 1. De plus,
si la décomposition en produit de facteurs premiers d’un nombre naturel n est donnée par

n= p1
`1 · · · pr

`r , (2.2)
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avec des premiers distincts p1, . . . , p`, alors la valeur de f (n) est donnée par

f (n) = f (p1
`1) · · · f (pr

`r ).

En d’autres mots, une fonction multiplicative est determinée par ses valeurs sur des puis-
sances de nombres premiers, un principe qu’on utilisera beaucoup de fois. Similairement,
une fonction complètement multiplicative est determinée par ses valeurs sur des nombres
premiers.

Évidemment, les fonctions id et ε sont complètement multiplicatives. Par contre, les
fonctions δP, log et ω ne sont ni multiplicatives, ni complètement multiplicatives.

En ce qui concerne la fonction τ, il n’est pas difficile de montrer qu’elle est une fonction
multiplicative. En effet, si la factorisation de n est donnée par (2.2), alors tout diviseur
de n sécrit comme

d = p1
`′1 · · · p``

′
r avec 0≤ `′j ≤ ` j .

À l’inverse tout nombre de cette forme est clairement un diviseur de n. Alors, on a pour
le nombre de diviseurs de n,

τ(n) = (`1 + 1) · · · (`r + 1).

Cela montre de plus, que τ est multiplicative, et que ses valuers sur les puissances des
nombres premiers sont données par

τ(p`) = (`+ 1).

La fonction ϕ est aussi multiplicative. Pour voir cela, supposons que n1 et n2 soient des
entiers premiers entre eux. Comme les deux groupes

(Z/n1n2Z)× et (Z/n1Z)× × (Z/n2Z)×

sont isomorphes, ce qui est une conséquence immédiate du théorème chinois des résidus,
on obtient

ϕ(n1n2) =
�

�(Z/n1n2Z)×
�

�=
�

�(Z/n1Z)×
�

�

�

�(Z/n2Z)×
�

�= ϕ(n1)ϕ(n2).

Plus tard on donnera une deuxième preuve de ce fait en utilisant une méthode différente.

2.3 La convolution de Dirichlet

L’ensemble A possède une structure additive, qui est simplement donnée par l’addition
usuelle des fonctions. Naïvement, on pourrait munir A de la même manière d’une struc-
ture multiplicative, mais il se révèlera qu’une autre définition est plus appropriée dans
notre contexte.

Définition. Soit f , g ∈ A. La convolution de Dirichlet de f et g, notée par f ∗ g, est la
fonction arithmétique définie par

( f ∗ g)(n) :=
∑

d|n

f (d)g
� n

d

�

.

La signification de cette définition vient du fait qu’un grand nombre de fonctions arith-
métiques sont définies comme la convolution d’autres fonctions arithmétiques plus simples.
Par exemple, on a

τ= ε ∗ ε et ω= ε ∗δP,
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et on verra beaucoup d’autres relations de cette forme dans ce qui suit.
Une propriété importante de la convolution de Dirichlet est le fait qu’elle préserve la

multiplicativité.

Théorème 2.1. Soient f , g ∈ A des fonctions multiplicatives. Alors leur convolution f ∗ g
est aussi multiplicative.

Preuve. Soit h := f ∗g. Il faut montrer que h(n1n2) = h(n1)h(n2) pour tous entiers n1 et n2
premiers entre eux. Comme (n1, n2) = 1, il existe une bijection entre l’ensemble des divi-
seurs de n1n2 et l’ensemble des paires de diviseurs de n1 et n2,

{d ∈ N : d | n1n2}↔ {(d1, d2) ∈ N2 : d1 | n1, d2 | n2},

qui est donnée par les applications

d 7→ ((d, n1), (d, n2)) et d1d2← [ (d1, d2).

Par conséquent on a

h(n1n2) =
∑

d|n1n2

f (d)g
�n1n2

d

�

=
∑

d1|n1
d2|n2

f (d1d2)g
�

n1n2

d1d2

�

,

et comme f et g sont multiplicatives, cette dernière expression se transforme en

∑

d1|n1
d2|n2

f (d1d2)g
�

n1n2

d1d2

�

=
∑

d1|n1
d2|n2

f (d1) f (d2)g
�

n1

d1

�

g
�

n2

d2

�

=
∑

d1|n1

f (d1)g
�

n1

d1

�

∑

d2|n2

f (d2)g
�

n2

d2

�

= h(n1)h(n2),

ce qui est exactement ce qu’on voulait montrer.

Remarquons que ce théorème ne reste plus vrai si on remplace la notion « multiplica-
tive » par la notion plus restrictive « complètement multiplicative ». Par exemple, la fonc-
tion τ est la convolution de deux fonctions complètement multiplicative, mais elle-même
ne l’est pas.

L’élement neutre par rapport à la convolution de Dirichlet est la fonction

e(n) :=

¨

1 si n= 1,

0 sinon,

que l’on peut vérifier facilement.

Théorème 2.2. L’ensemble A, muni de l’addition usuelle des fonctions comme addition et de
la convolution de Dirichlet comme multiplication, est un anneau commutatif unitaire avec
element neutre e.

2.4 Invertibilité des fonctions arithmétiques

Une question qui se pose naturellement est de savoir quelles sont les fonctions arith-
métiques qui ont un inverse par rapport à la convolution de Dirichlet. Étonnamment, la
caractérisation de ces fonctions est assez simple.
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Théorème 2.3. Une fonction arithmétique f est inversible si et seulement si f (1) 6= 0.

Preuve. Soit f ∈A inversible. Alors il existe g ∈A telle que f ∗ g = e, et par conséquent
on a

1= ( f ∗ g)(1) = f (1)g(1),

ce qui n’est possible que si f (1) 6= 0.
À l’inverse, soit f ∈ A telle que f (1) 6= 0. Alors on procède par récurrence pour

construire un inverse g de f . On pose

g(1) :=
1

f (1)
,

et, si g(d) est déjà définie pour tout d < n, on définit g(n) par

g(n) := −
1

f (1)

∑

d|n
d 6=1

f (d)g
� n

d

�

.

Cette fonction est bien définie, car f (1) 6= 0, et par définition satisfait la condition f ∗ g =
e. Alors f est inversible.

Si f ∈ A est inversible, on note f −1 son inverse et on l’appelle l’inverse de Dirichlet
de f . Comme on peut s’y attendre, l’opération de prendre l’inverse est compatible avec la
multiplicativité.

Théorème 2.4. Soit f ∈A multiplicative. Alors son inverse est aussi multiplicative.

Preuve. On avait déjà mentionné au-dessus que toute fonction arithmétique f satisfait
la condition f (1) = 1, ce qui assure l’existence de l’inverse f −1. Afin de montrer la
multiplicativité de f −1, on construit une fonction multiplicative g qui satisfait la condi-
tion f ∗ g = e. Par l’unicité de l’inverse, cela montrera que f −1 est en effet multiplicative.

Naturellement, on pose g(1) := 1. Sur les puissances des premiers p` on définit g(p`)
simplement par

g(p`) := f −1(p`),

et alors on étend cette définition par multiplicativité à tous les nombres naturels. Il reste
à vérifier la condition f ∗ g = e.

Comme f et g sont multiplicatives, alors leur convolution f ∗ g l’est aussi. Puisque la
fonction e est également multiplicative, il suffit de vérifier la condition f ∗ g = e pour des
puissances de nombres premiers. Mais on a

( f ∗ g)(p`) =
∑̀

j=0

f (p j)g(p`− j) =
∑̀

j=0

f (p j) f −1(p`− j) = ( f ∗ f −1)(p`) = 0,

ce qui conclut la preuve.

2.5 La fonction de Möbius

On finit ce chapitre avec la discussion d’une fonction qui, au premier coup d’œil semble
insignifiante, mais qui joue un rôle très important dans la théorie analytique des nombres.
C’est la fonction de Möbius µ(n), qui est simplement définie comme l’inverse de Dirichlet
de la fonction constante égale à 1,

µ := ε−1.
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En d’autre mots, c’est l’unique fonction arithmétique, qui satisfait les conditions

µ(1) = 1 et
∑

d|n

µ(d) = 0 pour tout n≥ 2.

Il est possible de trouver une description plus explicite en suivant l’idée utilisé dans
la preuve du théorème 2.3. Comme la fonction ε est multiplicative, alors la fonction de
Möbius l’est aussi. Étant donné un nombre premier p, on a

0= (ε ∗µ)(p) = µ(1) +µ(p),

ce qui implique que µ(p) = −1, et de la même manière on obtient pour tout `≥ 2 l’identité

∑̀

j=2

µ(p j) = 0,

qui montre par récurrence que µ(p`) = 0 pour tout ` ≥ 2. En résumé, on obtient la
description alternative suivante pour la fonction de Möbius :

µ(n) =







1 si n= 1,

(−1)` si n est le produit de ` nombres premiers distincts,

0 sinon.

Une conséquence immédiate de la définition initiale de µ comme l’inverse de Dirichlet
de ε est le résultat suivant.

Théorème 2.5 (Formule d’inversion de Möbius). Soit f , g ∈A. Alors on a

g(n) =
∑

d|n

f (d) pour tout n ∈ N,

si et seulement si

f (n) =
∑

d|n

µ(d)g
� n

d

�

pour tout n ∈ N.

Le principe derrière ce résultat s’avère parfois très utile, et afin d’en donner un exemple,
considérons la fonction ϕ ∗ ε. Cette fonction est clairement multiplicative, et ses valeurs
sur des puissances de premiers sont données par

(ϕ ∗ ε)(p`) = 1+
∑̀

j=1

p j−1(p− 1) = 1+ (p− 1)
p` − 1
p− 1

= p`.

ce qui montre que ϕ ∗ ε = id. En multipliant les deux côtés par l’identité, on obtient la
relation

ϕ = id∗µ,

ou, plus explicitement,
ϕ(n)

n
=
∑

d|n

µ(d)
d

. (2.3)

11



Chapitre 3

Estimations asymptotiques

3.1 La notation de Landau

Afin de pouvoir décrire précisement le comportement asymptotiques des fonctions, il
est utile d’introduire la notation suivante, qui est omniprésente dans la théorie analytique
des nombres.

Soit D ⊂ C, et soient f : D→ C et g : D→ [0,∞) des fonctions. On pose

f = O(g) ou f � g,

s’il existe une constante réelle positive C telle que

| f (z)| ≤ C g(z) pour tout z ∈ D.

Comme une variation de cette notation, on écrira

f1 = f2 +O(g),

si f1, f2 : D→ C sont des fonctions telles que f1 − f2� g.
Si f est une fonction à valeurs positives, on note

f � g,

lorsqu’on a
f � g et g � f .

Soit z0 un point d’accumulation de D. On note

f (z) = o(g(z)) pour z→ z0,

si g(z) 6= 0 pour tout z ∈ D et si

lim
z→z0

| f (z)|
g(z)

= 0.

Comme avant, on utilisera la notation

f1 = f2 + o(g),

pour dire que f1, f2 : D → C sont des fonctions telles que f1 − f2 = o(g). Comme cas
spécial, on note

f1(z)∼ f1(z) pour z→ z0,
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lorsque
f1(z)− f1(z) = o(1).

Dans les applications, on omet souvent l’indication de D ou de z0, si le contexte est
clair. Dans les applications les fonctions f et g dépendent souvent de certains paramètres
et dans ces cas là, la constante C , appelée la constante implicite, dépend aussi de ces
paramètres, sauf si indiqué explicitement du contraire.

3.2 La fonction sommatoire d’une fonction arithmétique

Beaucoup de fonction arithmétiques intéressantes affichent un comportement très irré-
gulier voire chaotique. Deux exemples frappants sont la fonction τ(n), qui d’un côté prend
des valeurs arbitrairement larges, mais qui de l’autre vaut 2 sur tous les nombres premiers,
et la fonction de Möbius µ(n), qui prend les valeurs −1, 0 et 1 de façon apparemment
aléatoire.

Néanmoins, il est possible d’étudier le comportement général d’une fonction arithmé-
tique f en considérant sa moyenne arithmétique

1
x

∑

n≤x

f (n),

ou, ce qui revient au même, sa fonction sommatoire
∑

n≤x

f (n), (3.1)

qui souvent peuvent être estimées assez précisément, contrairement à la fonction elle-
même.

Le but de ce chapitre est d’introduire quelques méthodes élémentaires pour déterminer
le comportement asymptotique de la somme (3.1) pour des fonctions arithmétiques f . En
général, l’objectif est de trouver une expression simple M(x), telle que

∑

n≤x

f (n)∼ M(x) pour x →∞.

Une formule de cette forme est appelée formule asymptotique.
Mais en général, on cherche à obtenir une approximation plus précise de la fonction

sommatoire en donnant aussi une estimation de l’erreur qui en résulte. En d’autres mots,
on cherche des expressions simples M(x) et E(x), telles qu’on peut écrire la somme (3.1)
comme

∑

n≤x

f (n) = M(x) +O(E(x)).

Cependant, il est souvent nécessaire d’obtenir des résultats plus précis de la forme
∑

n≤x

f (n) = M(x) +O(R(x)),

où M(x) , où R(x) est une expression simple qui est inférieure à M(x). Dans ce contexte,
la fonction M(x) s’appelle le terme principal et l’expression R(x) est le terme d’erreur.
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3.3 Approximation par une intégrale

Le cas le plus simple est si f ∈ A est la restriction d’une fonction réelle continue. Si la
variation de f n’est pas trop grande, on peut s’attendre à ce que sa fonction sommatoire
soit bien approchée par l’intégrale correspondante, c’est à dire que l’on a

∑

n≤x

f (n)∼
∫ x

1

f (ξ)dξ.

Un premier résultat, qui donne une forme précise à cette idée, est le suivant.

Théorème 3.1. Soient x , y ∈ R tels que y < x, et soit f : [y, x]→ R une fonction mono-
tone. Alors

∑

y<n≤x

f (n) =

∫ x

y

f (ξ)dξ+O(| f (y)|+ | f (x)|).

Preuve. Supposons que f soit croissante. En utilisant le fait que pour tout

∫ n

n−1

f (ξ)dξ≤ f (n)≤
∫ n+1

n

f (ξ)dξ pour y + 1≤ n≤ x − 1,

on obtient
∫ x−1

y

f (ξ)dξ≤
∑

y+1≤n≤x−1

f (n)≤
∫ x

y+1

f (ξ)dξ,

d’où le théorème. Le cas f décroissante se montre de la même manière.

Comme applicaton immédiate de ce théorème, on obtient l’estimation asymptotique
suivante pour la fonction sommatoire de ε,

∑

n≤x

1= x +O(1),

ainsi que pour celle du logarithme,
∑

n≤x

log n= x log x − x +O(log x). (3.2)

Bien que cette formule simple se rende souvent utile, elle n’est applicable que pour une
classe comparativement petite de l’ensemble des fonctions. Afin de traiter des fonctions
plus générales, la formule sommatoire suivante est utile.

Théorème 3.2 (Formule sommatoire d’Euler-Maclaurin). Soit x , y ∈ R tels que y < x, et
soit f : [y, x]→ C une fonction continûment dérivable. Alors

∑

y<n≤x

f (n) =

∫ x

y

f (ξ)dξ+

∫ x

y

ψ(ξ) f ′(ξ)dξ+ψ(y) f (y)−ψ(x) f (x), (3.3)

où ψ(ξ) est la fonction définie par

ψ(ξ) := {ξ} −
1
2

.
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Preuve. Observons tout d’abord qu’on peut supposer [y] + 1≤ x , car sinon la formule se
montre de manière triviale.

On considère en premier le cas y, x ∈ Z. En utilisant l’intégration par parties, on peut
vérifier facilement que pour tout n ∈ Z,

f (n+ 1) + f (n)
2

=

∫ n+1

n

f (ξ)dξ+

∫ n+1

n

�

ξ− n−
1
2

�

f ′(ξ)dξ, (3.4)

La formule (3.3) suit immédiatement en sommant cette identité sur tout les entiers n dans
l’intervalle [y, x − 1].

Afin de traiter le cas général, on écrit la somme comme
∑

y<n≤x

f (n) = f ([y] + 1) +
∑

[y]+1<n≤[x]

f (n).

En évaluant la somme à droite par (3.3), et en observant les identités
∫ x

[x]
f (ξ)dξ+

∫ x

[x]
ψ(ξ) f ′(ξ)dξ=

f ([x])
2

+ψ(x) f (x),

et
∫ [y]+1

y

f (ξ)dξ+

∫ [y]+1

y

ψ(ξ) f ′(ξ)dξ=
f ([y] + 1)

2
−ψ(y) f (y),

qui peuvent être montrées de la même manière que l’identité (3.4) au-dessus, on la for-
mule (3.3).

Pour donner un premier exemple d’une application de ce résultat, on estime les sommes
partielles de la série harmonique.

Théorème 3.3. On a pour, tout x ≥ 1,

∑

n≤x

1
n
= log x + γ+O

�

1
x

�

, (3.5)

où la constante γ est définie par

γ := 1−
∫ ∞

1

{ξ}
ξ2

dξ

Preuve. En utilisant le théorème (3.2), on obtient

∑

n≤x

1
n
=

∫ x

1

1
ξ

dξ−
∫ x

1

ψ(ξ)
ξ2

dξ+ψ(1)−
ψ(x)

x
+ 1

= log x +
1
2
−
∫ ∞

1

ψ(ξ)
ξ2

dξ+

∫ ∞

x

ψ(ξ)
ξ2

dξ−
ψ(x)

x
.

On peut borner les deux derniers termes par
∫ ∞

x

ψ(ξ)
ξ2

dξ−
ψ(x)

x
�
∫ ∞

x

1
ξ2

dξ+
1
x
�

1
x

,
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et on obtient la formule asymptotique (3.5) en notant que l’intégrale dans l’expression

1
2
−
∫ ∞

1

ψ(ξ)
ξ2

dξ= 1−
∫ ∞

1

{ξ}
ξ2

dξ

converge absolument.

La constante γ, qui apparait dans la formule asymptotique (3.5), est appelé la constante
d’Euler-Mascheroni. Une définition alternative, qui est une conséquence directe du théo-
rème 3.3, est

γ= lim
x→∞

�

∑

n≤x

1
n
− log x

�

.

3.4 La méthode de convolution

Effectivement, les méthodes introduites dans la section précedente ne s’appliquent que
pour le sous-ensemble des fonctions arithmétiques ayant un comportement très régu-
lier, qui exclut notamment les cas les plus intéressants comme par exemple τ(n) et ϕ(n).
Cependant, il est souvent possible d’obtenir des résultats dans ces cas en notant que beau-
coup de ces fonctions s’écrivent comme des convolution de fonctions plus simples.

Si f ∈A, l’idée générale est d’exprimer cette fonction comme une convolution f = g∗h,
où g est une fonction arithmétique, qui est dans un certain sens une bonne approximation
de f et dont le comportement asymptotique est bien compris, et où h est une fonction
arithmétique comparativement petite. Alors, on a pour la fonction sommatoire de f ,

∑

n≤x

f (n) =
∑

d≤x

h(d)
∑

n≤ x
d

g(n),

et souvent on peut obtenir une formule asymptotique en estimant d’abord la somme sur n,
et en complétant après la somme sur d.

Comme première application de cette idée, on montre la formule asymptotique suivante
pour la fonction sommatoire de ϕ(n).

Théorème 3.4. Il existe une constante réelle C, telle que
∑

n≤x

ϕ(n) = C x2 +O(x log x).

Preuve. En utilisant l’identité (2.3), on peut écrire la somme comme suit,

∑

n≤x

ϕ(n) =
∑

n≤x

n
∑

d|n

µ(d)
d
=
∑

d≤x

µ(d)
d

∑

n≤x
d|n

n=
∑

d≤x

µ(d)
∑

n≤ x
d

n.

Par le théorème 3.1, on a
∑

n≤ x
d

n=
x2

d2
+O

� x
d

�

,

ce qui nous donne

∑

n≤x

ϕ(n) =
∑

d≤x

µ(d)

�

x2

d2
+O

� x
d

�

�

= x2
∑

d≤x

µ(d)
d2
+O

�

x
∑

d≤x

1
d

�

.
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On peut estimer la somme sur d comme suit,

∑

d≤x

µ(d)
d2
=
∞
∑

d=1

µ(d)
d2
+O

�

∑

d>x

1
d2

�

=
∞
∑

d=1

µ(d)
d2
+O

�

1
x

�

,

et en posant

C :=
∞
∑

d=1

µ(d)
d2

,

on obtient finalement
∑

n≤x

ϕ(n) = x2
�

C +O
�

1
x

��

+O(x log x) = x2C +O(x log x),

ce qui est la formule asymptotique cherchée.

Plus tard dans le cours on trouvera la valeur exacte de la constante C , qui apparait dans
cette formule asymptotique.

Une autre exemple où cette idée peut être appliquée avec succès concerne les entiers
sans facteur carré (square-free integers), qui sont par définition les entiers qui non divi-
sibles par le carré d’un premier.

3.5 La méthode hyperbolique de Dirichlet

La prochaine fonction que l’on veut considérer est la fonction diviseur τ(n). Comme on
peut écrire cette fonction comme la convolution τ = ε ∗ ε, on peut essayer d’appliquer
la méthode de convolution. Cela fonctionne, mais la formule qui en résulte a un terme
d’erreur très mauvais :

∑

n≤x

d(n) = x log x +O(x).

Une méthode plus sophistiquée, due a Dirichlet, donne un résultat bien meilleur.

Théorème 3.5. On a, pour tout x ≥ 1,
∑

n≤x

d(n) = x log x + (2γ− 1)x +O
�p

x
�

.

Preuve. L’idée principale est d’interpréter la somme comme l’ensemble des points (a, b) ∈
N2 tels que ab ≤ x , c’est à dire

∑

n≤x

τ(n) = #{(a, b) ∈ N2 : ab ≤ x}.

Maintenant, on sectionne cet ensemble en trois parties disjointes,

I := {(a, b) ∈ N2 : a, b ≤
p

x},

II := {(a, b) ∈ N2 : b >
p

x , ab ≤ x},

III := {(a, b) ∈ N2 : a >
p

x , ab ≤ x}.

Cela correspond à écrire la somme en question comme
∑

n≤x

d(n) =
∑

a,b≤x

1+ 2
∑

ab≤x
a≥
p

x

1. (3.6)
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La deuxième somme s’évalue facilement
∑

a,b≤
p

x

1= (
p

x +O(1))2 = x +O
�p

x
�

. (3.7)

Concernant l’autre, on a en utilisant le théorème 3.3,

∑

ab≤x
a≥
p

x

1=
∑

b≤
p

x

∑

a≤ x
b

1=
∑

b≤
p

x

� x
b
+O(1)

�

= x
∑

b≤
p

x

1
b
+O

�p
x
�

,

et en utilisant le théorème 3.3, on obtient

∑

ab≤x
a≥
p

x

1= x
�

log x
2
+ γ+O

�

1
p

x

��

+O
�p

x
�

=
x log x

2
+ xγ+O

�p
x
�

. (3.8)

Le théorème suit finalement en insérant (3.7) et (3.8) dans (3.6).

Il est tentant d’interpreter ce résultat en disant qu’en moyenne un entier n a envi-
ron log n diviseurs.

Théorème 3.6. Soit A> 0. Alors il existe un nombre infini de n ∈ N tels que

(log n)A < d(n).

Preuve. Soient p1, . . . , pA+1 des nombres premiers distincts. On pose n = (p1 · · · pA+1)r ,
où r ≥ 1 est un entier positif arbitraire. Par la multiplicativité de la fonction nombre de
diviseurs, on peut calculer la valeur de d(n) comme suivant,

d(n) = d(p1
r) · · · d(pA+1

r) = (r + 1)A+1.

En ce qui concerne (log n)A, on a simplement

(log n)A = rA(log p1 + . . .+ log pA+1)
A.

Donc, dès lors que r ≥ (log p1 + . . .+ log pA+1)A, on obtient l’inégalité

(log n)A ≤ rA+1 < (r + 1)A+1 = d(n).

Parce qu’on peut choisir r arbitrairement, cela montre qu’il existe un nombre infini de n ∈
N tel que (log n)A < d(n).

Théorème 3.7. Soit ε > 0. Alors il existe une constante Cε > 0 telle que pour tout n ∈ N

d(N)≤ Cεn
ε.

Preuve. Soit Pε l’ensemble donné par

Pε :=
�

p ∈ P : p ≤ e1/ε
	

.

Par la définition de Pε et par l’inégalité r + 1 ≤ er , qui est vraie pour tous r ∈ N, on sait
que

r + 1
pεr

≤ 1 pour tous p 6∈ Pε et r ∈ N.
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En plus, on définit le nombre réel Mε comme

Mε := max
ρ∈[0,∞)

ρ + 1
2ερ

.

Or, si n ∈ N et si n= p1
r1 · · · p` r` est sa décomposition en produit de facteurs premiers, on

a
d(n)
nε
=
∏

1≤i≤`

(ri + 1)
pi
εri
≤
∏

1≤i≤`
pi∈Pε

(ri + 1)
pi
εri
≤
∏

1≤i≤`
pi∈Pε

(ri + 1)
2εri

≤
∏

1≤i≤`
pi∈Pε

Mε ≤ Mε
|Pε |,

et l’énoncé se déduit en posant Cε := Mε
|Pε |.

3.6 La formule sommatoire d’Abel

Théorème 3.8 (Formule sommatoire d’Abel). Soit f une fonction arithmétique, soient
x , y ∈ R tels que 0 < y < x, et soit g : [y, x] → C une fonction continûment dérivable.
Alors

∑

y<n≤x

f (n)g(n) =

�

∑

n≤x

f (n)

�

g(x)−
�

∑

n≤y

f (n)

�

g(y)−
∫ x

y

�

∑

n≤ξ

f (n)

�

g ′(ξ)dξ.

Preuve. On pose
F(x) :=

∑

n≤x

f (n).

On peut supposer que [y] + 1 ≤ [x], car sinon la somme à gauche ne contient aucun
terme et l’identité devient triviale. Alors, on a

∑

y<n≤x

f (n)g(n) =
∑

y<n≤x

(F(n)− F(n− 1))g(n)

=
∑

y<n≤x−1

F(n)(g(n)− g(n+ 1)) + F(x)g([x])− F(y)g([y] + 1).

En transformant la somme dans la dernière ligne comme suit,

∑

y<n≤x−1

F(n)(g(n)− g(n+ 1)) = −
∑

y<n≤x−1

∫ n+1

n

F(ξ)g ′(ξ)dξ= −
∫ [x]

[y]+1

F(ξ)g ′(ξ)dξ,

et en observant que

F(x)g([x]) = F(x)g(x)−
∫ x

[x]
F(ξ)g ′(ξ)dξ,

F(y)g([y] + 1) = F(y)g(y) +

∫ [y]+1

y

F(ξ)g ′(ξ)dξ,

on obtient finalement l’identité cherchée.

Cette formule sommatoire est surtout utile si on cherche à évaluer la somme
∑

n≤x

f (n)g(n),
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où f est une fonction arithmétique dont on connait déjà bien le comportement asympto-
tique, et où g est une fonction suffisament régulière.

Comme illustration simple, on veut trouver une formule asymptotique pour la somme

∑

n≤x

ϕ(n)
n

.

Au vu du théorème 3.4, il est tout naturel d’utiliser la sommation par parties pour cette
somme. En effet, on a

∑

n≤x

ϕ(n)
n
=

�

∑

n≤x

ϕ(n)

�

1
x
+

∫ x

1

 

∑

n≤ξ

ϕ(n)

!

1
ξ2

dξ

=
C x2 +O(x log x)

x
+

∫ x

1

Cξ2 +O(ξ logξ)
ξ2

dξ

= C x +O(log x) +

∫ x

1

C dξ+O

�∫ x

1

logξ
ξ

dξ

�

= 2C x +O
�

(log x)2
�

,

où C est la même constante que dans le théorème 3.4.
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Chapitre 4

Résultats élémentaires sur les
nombres premiers

4.1 Formes équivalentes du théorème des nombres
premiers

Il s’avère qu’il est avantageux de considérer des sommes ponderées par un poids appro-
prié. Une possibilité naturelle est d’introduire un poids logarithmique. La fonction θ (x)
définie comme cela est :

θ (x) :=
∑

p≤x

log p.

Une autre possibilité est d’utiliser la fonction de von Mangoldt Λ(n), qui est définie
comme

Λ(n) :=

¨

log p si n= p` avec p ∈ P et `≥ 1,

0 sinon.

Évidemment, cette fonction n’est pas multiplicative. Cependant, il suit immédiatement de
la définition que

∑

d|n

Λ(d) = log n,

ou en d’autres mots Λ ∗ ε = log, et en multipliant les deux côtes par µ, on voit que

Λ= log∗µ.

On note ψ(x) la fonction sommatoire de cette fonction,

ψ(x) :=
∑

n≤x

Λ(n).

Ces fonctions sont souvent appelées les fonctions de Tchebychev. On a

ψ(x)− θ (x) =
∑

p≤
p

x

log p
∑

2≤`≤ log x
log p

1≤
∑

p≤
p

x

log p
�

log x
log p

�

≤
p

x log x ,

donc on a
ψ(x) = θ (x) +O

�p
x log x

�

. (4.1)

Le théorème suivant montre qu’on peut considérer n’importe laquelle des fonctions
π(x), θ (x) ou ψ(x) afin de montrer le théorème des nombres premiers.
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Théorème 4.1. Les trois affirmations suivantes sont équivalentes :

π(x)∼
x

log x
, θ (x)∼ x , ψ(x)∼ x .

Preuve. Il suffit de montrer l’équivalence de i) et ii), car l’équivalence avec iii) suit par (4.1).
Supposons que π(x)∼ x

log x . Alors par la formule sommatoire d’Abel, on obtient

θ (x) = π(x) log x −
∫ x

1

π(ξ)
ξ

dξ= x + o(x) +O

�∫ x

2

1
logξ

dξ

�

.

Mais

∫ x

1

1
logξ

dξ=

∫

p
x

1

1
logξ

dξ+

∫ x

p
x

1
logξ

dξ≤
p

x +
2

log x

∫ x

1

1dξ�
x

log x
,

et par conséquent
θ (x) = x + o(x).

À l’inverse, supposons que θ (x) ∼ x . Comme avant, on utilise la formule sommatoire
d’Abel,

π(x) =
θ (x)
log x

+

∫ x

3
2

θ (ξ)
ξ(logξ)2

dξ=
x

log x
+ o

�

x
log x

�

+O

�

∫ x

3
2

1
(logξ)2

dξ

�

,

et similairement comme au-dessus, on voit que
∫ x

3
2

1
(logξ)2

dξ�
x

(log x)2
,

et ii) suit.

Plus tard on se concentrera sur la somme ψ(x).

4.2 Le théorème de Tchebychev

Théorème 4.2. On a

π(x)�
x

log x
, θ (x)� x , ψ(x)� x .

Preuve. Soit
S(x) :=

∑

n≤x

log n− 2
∑

n≤ x
2

log n.

En utilisant la formule (3.2), on voit que

S(x) = (log2)x +O(log x).

En particulier, on a
S(x)� x .
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L’idée est maintenant est d’utiliser le fait que log= Λ∗ε qui donne une connexion entre
cette somme et les nombres premiers. Comme on a

∑

n≤x

log n=
∑

d≤x

Λ(d)
∑

n≤ x
d

1=
∑

d≤x

Λ(d)
h x

d

i

,

on voit que

S(x) =
∑

d≤x

Λ(d)
h x

d

i

− 2
∑

d≤ x
2

Λ(d)
h x

2d

i

=
∑

d≤x

Λ(d)
�h x

d

i

− 2
h x

2d

i�

.

Pour l’expression dans les parenthèses, on a pour tous α≥ 1,

[α]− 2
hα

2

i

∈ {0,1},

et surtout il est vrai que

[α]− 2
hα

2

i

= 1 si α ∈ [1,2).

En utilisant ces faits, on peut borner la somme S(x) par

ψ(x)−ψ
� x

2

�

≤ S(x)≤ψ(x).

Une conséquence immédiate est

ψ(x)≥ S(x)� x .

De l’autre côté on a
ψ(x)−ψ

� x
2

�

= O(x),

et

ψ(x) =
∞
∑

j=0

�

ψ
� x

2 j

�

−ψ
� x

2 j+1

��

= O

 

∞
∑

j=0

x
2 j

!

= O(x),

comme attendu.
L’affirmation que θ (x)� x suit immédiatement en considérant (4.1). De plus, on a

π(x)≥
∑

p≤x

log p
log x

=
θ (x)
log x

�
x

log x
,

et

π(x)≤ π(
p

x) +
1

log
p

x

∑

p
x<p≤x

log p ≤
p

x +
2θ (x)
log x

�
x

log x
.

Cela conclut la preuve.

4.3 Les théorèmes de Mertens

Théorème 4.3. On a
∑

p≤x

log p
p
= log x +O(1).
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Preuve. On a

∑

n≤x

log n=
∑

d≤x

Λ(d)
h x

d

i

= x
∑

d≤x

Λ(d)
d
+O

�

∑

d≤x

Λ(d)

�

= x
∑

d≤x

Λ(d)
d
+O(x),

où on a utilisé que ψ(x) � x , comme montré au-dessus. En comparant ce résultat
avec (3.2) et en divisant par x , on voit que

∑

d≤x

Λ(d)
d
= log x +O(1).

En notant que
�

�

�

�

�

∑

n≤x

Λ(n)
n
−
∑

p≤x

log p
p

�

�

�

�

�

≤
∑

p`≤x
`≥2

log p
p`
≤
∑

p

log p
∞
∑

`=2

1
p`
=
∑

p

log p
p(p− 1)

� 1,

on obtient alors le résultat.

Comme corollaire,

Théorème 4.4. Il existe une constante réelle M telle que, pour x ≥ 3,

∑

p≤x

1
p
= log log x +M +O

�

1
log x

�

.

Preuve. On pose

E(x) :=
∑

p≤x

log p
p
− log x ,

et on note que par le théorème 4.3 on a E(x)� x . Alors

∑

p≤x

1
p
=

log x +O(1)
log x

+

∫ x

3
2

logξ+ E(ξ)
(logξ)2ξ

dξ

=

∫ x

3
2

1
ξ logξ

dξ+

∫ x

3
2

E(ξ)
ξ(logξ)2

dξ+ 1+O
�

1
log x

�

= log log x +

�

∫ ∞

3
2

E(ξ)
ξ(logξ)2

dξ+ 1− log log
3
2

�

+O
�

1
log x

�

, (4.2)

où on a utilisé le fait que
∫ ∞

x

E(ξ)
ξ(logξ)2

dξ�
∫ ∞

x

1
ξ(logξ)2

dξ=

∫ ∞

log x

1
ξ2

dξ�
1

log x
.

Comme l’intégrale en (4.2) est non seulement convergente, mais aussi constante, on ob-
tient finalement le résultat.

Théorème 4.5. Il existe une constante réel A> 0 telle que pour x ≥ 2,

∏

p≤x

�

1−
1
p

�

=
A

log x

�

1+O
�

1
log x

��

.
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Preuve. Dans un premier temps on considère la somme

∑

p≤x

log
�

1−
1
p

�

.

En utilisant la série de Taylor de log x en 1 on voit que

log
�

1−
1
p

�

= −
∞
∑

`=1

1
`p`

,

et alors

∑

p≤x

log
�

1−
1
p

�

= −
∑

p≤x

∞
∑

`=1

1
`p`
= −

∑

p≤x

1
p
+
∑

p

∞
∑

`=2

1
`p`
+O

�

∑

p>x

∞
∑

`=2

1
`p`

�

.

On utilise le théorème 4.4 pour évaluer la première somme à droite, la deuxième est une
constante et pour le terme d’erreur on a

∑

p>x

∞
∑

`=2

1
`p`
≤
∑

p>x

1
p2

∞
∑

`=0

1
p`
≤
∑

p>x

1
p(p− 1)

∑

n>x

1
(n− 1)2

�
1
x

.

Alors
∑

p≤x

log
�

1−
1
p

�

= − log log x + A′ +O
�

1
log x

�

avec une certaine constante A’ . En prenant l’exponentielle de chaque côté et en utilisant
le fait que

exp
�

1+O
�

1
log x

��

= 1+O
�

1
log x

�

,

qui est une conséquence immédiate de la série de Taylor de exp en 1, on obtient finalement

∏

p≤x

�

1−
1
p

�

=
eA′

log x

�

1+O
�

1
log x

��

.

Cela conclut la preuve.

4.4 La fonction sommatoire de µ(n)

Ici on considère la fonction sommatoire de µ(n)

M(x) :=
∑

n≤x

µ(n),

aussi appelé la fonctions de Mertens.

Lemme 4.6. On a pour tout x ≥ 1,
�

�

�

�

�

∑

d≤x

µ(d)
d

�

�

�

�

�

≤ 1.
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Preuve. On peut supposer que x ∈ N. En utilisant le fait que e = µ ∗ ε, on a

1=
∑

n≤x

e(n) =
∑

n≤x

∑

d|n

µ(d) =
∑

d≤x

µ(d)
h x

d

i

= x
∑

d≤x

µ(d)
d
−
∑

d≤x

µ(d)
n x

d

o

.

On note que
�

x
x

	

, on voit que

x

�

�

�

�

�

∑

d≤x

µ(d)
d

�

�

�

�

�

≤ 1+

�

�

�

�

�

∑

d≤x−1

µ(d)
n x

d

o

�

�

�

�

�

≤ 1+ x − 1≤ x ,

et le lemme suit en divisant les deux cotes par x .

Théorème 4.7. Le théorème des nombres premiers est équivalent à l’affirmation que
∑

n≤x

µ(n) = o(x).

Preuve. Supposons que le théorème des nombres premiers est vrai, c’est à dire

ψ(x)∼ x .

Soit
H(x) :=

∑

n≤x

µ(n) log n.

Notons que

Λ(n) =
∑

d|n

µ(d) log
� n

d

�

= log n
∑

d|n

µ(d)−
∑

d|n

µ(d) log d = −
∑

d|n

µ(d) log d,

et par inversion de Möbius
µ(n) log n= −(µ ∗Λ)(n).

Alors
H(x) = −

∑

d≤x

µ(d)
∑

n≤ x
d

Λ(n) = −
∑

d≤x

µ(d)ψ
� x

d

�

.

Ici on utilise l’hypothèse. Soit ε > 0. Alors il existe x0 > 0 telle que

|ψ(x)− x | ≤ εx pour tout x ≥ x0.

Alors

H(x) = −
∑

d≤ x
x0

µ(d)ψ
� x

d

�

−
∑

x
x0
<d≤x

µ(d)ψ
� x

d

�

= −x
∑

d≤ x
x0

µ(d)
d
−
∑

d≤ x
x0

µ(d)
�

ψ
� x

d

�

−
x
d

�

−
∑

x
x0
<d≤x

µ(d)ψ
� x

d

�

.

et

|H(x)| ≤ x

�

�

�

�

�

∑

d≤x/x0

µ(d)
d

�

�

�

�

�

+
∑

d≤ x
x0

�

�

�ψ
� x

d

�

−
x
d

�

�

�+
∑

x
x0
<d≤x

�

�

�ψ
� x

d

�
�

�

�.
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Le premier terme est borné par Lemme. Pour le deuxième on a par l’hypothèse

∑

d≤ x
x0

�

�

�ψ
� x

d

�

−
x
d

�

�

�≤ εx
∑

d≤x/x0

1
d
≤ εx log x +O(x).

Et pour le troisieme terme

∑

x
x0
<d≤x

�

�

�ψ
� x

d

�
�

�

�≤
∑

x/x0<d≤x

x
d

log
� x

d

�

≤ x0 log x0

∑

d≤x

1≤ (x0 log x0)x .

Après tout
|H(x)| ≤ x(1+ ε log x +O(1) + x0 log x0)

et
�

�

�

�

H(x)
x log x

�

�

�

�

≤ ε +O
�

1
log x

�

c’est a dire

lim sup
x→∞

�

�

�

�

H(x)
x log x

�

�

�

�

≤ ε

Comme ε était arbitraire, cela montre que

lim
x→∞

H(x)
x log x

= 0.

Par la formule sommatoire d’Abel,

1
x

∑

d≤x

µ(d) =
H(x)

x log x
+

1
x

∫ x

2

H(ξ)
ξ(logξ)2

dξ= o(1) +O

�

1
x

∫ x

2

1
logξ

dξ

�

= o(1).

L’autre sens est laissé en exercice.
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Chapitre 5

Séries de Dirichlet

5.1 La série de Dirichlet associée à une fonction
arithmétique

Pour des raisons qui deviendront claires on introduit l’analyse complex dans la des outils
à notre disposition dans l’étude des fonctions arithmétiques. Un très bon moyen de faire
ceci d’utiliser ce qu’on appelle les séries de Dirichlet. C’est d’ailleurs celui-ci qui modelé
la théorie des nombres pendant les derniers siècles. Si f est une fonction arithmétique,
alors la série de Dirichlet associée à f est définie comme

L f (s) :=
∞
∑

n=1

f (n)
ns

pour s ∈ C.

Il faut noter en ce moment une convention. Dans la théorie analytique des nombres, c’est
la coutume de noter un nombre complexe s ∈ C comme

s = σ+ i t,

où σ = Re(s) et t = Im(s).
Le lien entre les fonctions arithmétiques et l’analyse complexe est donné par .

Théorème 5.1. Soit f ∈A. Alors il existeσa ∈ R∪{±∞} tel que L f (s) converge absolument
pour tout s ∈ C avec Re(s)> σa , et ne converge pas absolument pour tout s ∈ C avec Re(s)<
σa.

Preuve. Soit
D := {s ∈ C : L f (s) converge absolument}.

Si D = ;, alors naturellement on a σa =∞. Si D = C, alors on a σa = −∞. alors on peut
définir

σa := inf{Re(s) : s ∈ D},

et on montre que ce nombre satisfait les conditions recherchées .
Si Re(s) < σa, on sait par définition de σa que L f (s) ne converge pas absolument. Par

contre, si s = σ+ i t, s′ = σ′ + i t ′ ∈ C tels que σ′ ≥ σ, alors

∞
∑

n=1

�

�

�

�

f (n)
ns′

�

�

�

�

=
∞
∑

n=1

| f (n)|
nσ′

≤
∞
∑

n=1

| f (n)|
nσ

=
∞
∑

n=1

�

�

�

�

f (n)
ns

�

�

�

�

.

Cela montre que si L f (s) converge absolument en s, alors forcément elle converge abso-
lument en s′ pour tout Re(s′)≥ Re(s).

28



La constante σa, qui apparaît dans le théorème au-dessus est appelée l’abscisse de
convergence absolue de L f (s).
Le sous-ensemble de C est appelé le demi-plan de convergence absolue de L f (s).

Théorème 5.2. Soit f ∈ A. Alors il existe σc ∈ R ∪ {±∞}, telle que la série de Dirichlet
associée à f converge pour Re(s) > σa, et diverge pour Re(s) < σa. La convergence est
uniforme sur tout sous-ensemble compact du demi-plan de convergence. De plus, on a

σa − 1≤ σc ≤ σa.

Preuve. Supposons que L f (s) converge en un point s0 ∈ C. On veut montrer qu’alors L f (s)
converge pour tous Re(s)> Re(s0).
Soit K = [A, B]× [C , D] un compact contenu dans la région de convergennce.
De plus, soit s0 ∈ (σc, A). Alors les deux nombres suivants existent :

m :=min{Re(s)−Re(s0) : s ∈ K} et M :=max{|s− s0| : s ∈ K}.

Soit δ = σ−σ0 > 0, et soient

S(x , y) :=
∑

x<n≤y

f (n)
ns

et S0(x , y) :=
∑

x<n≤y

f (n)
ns0

.

Soit ε > 0. Par le critère de Cauchy, on sait qu’il existe x0 ≥ 1 tel que

|S0(x , y)| ≤ ε pour tout y > x ≥ x0.

Par sommation partielle,

S(x , y) =
∑

x<n≤y

f (n)
ns0

ns0−s = S0(x , y)y s0−s − (s0 − s)

∫ y

x

S0(x ,ξ)ξs0−s−1 dξ.

Par

|S(x , y)| ≤ ε y−δ + ε|s− s0|
∫ y

x

ξ−δ−1 dξ≤ ε
�

1+
|s− s0|
σ−σ0

�

≤ ε
�

1+
M
m

�

=: ε′.

Comme ε′ ne dépend pas de x ni de y , alors on voit que le critère de Cauchy est satisfaite.
Maintenant posons

D := {s ∈ C : L f (s) est convergente} et σc := inf{Re(s) : s ∈ D}.

D’abord, si D est vide on a σc =∞, et si D = C alors σc = −∞.
Si Re(s)< σc, alors par définition L f (s) est divergente. Sinon il existe s0 ∈ D. Mais comme
on avait vu précédemment, alors tout s avec Re(s) > Re(s0) est aussi dans D. Comme
on peut trouver des s arbitrairement proche de la droite Re(s) = σc, les deux premiers
résultats sont montrés.

Il reste à montrer l’inégalité. Évidemment, on a σc ≤ σa.
Supposons que L f (s) converge à‘s0. Alors

lim
n→∞

f (n)
ns0

= 0.

En particulier, il existe n0 ∈ N, tel que
�

�

�

�

f (n)
ns0

�

�

�

�

≤ 1 pour n≥ n0,
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et par conséquent on a pour tout s ∈ C,
�

�

�

�

f (n)
ns

�

�

�

�

≤
1

nσ−σ0
pour n≥ n0.

Alors, si σ > σ0 + 1,
∞
∑

n≥n0

| f (n)|
ns

≤
∞
∑

n≥n0

1
nσ−σ0

<∞,

et on voit que L f (s) converge absolument pour tout Re(s)> σ0 + 1.

Cette constante σc est appelée l’abscisse de convergence simple de L f (s).
Remarquons cependant qu’afin de pouvoir faire de l’analyse complexe, il faut s’assurer

que les fonctions définies sont holomorphes. Néanmoins, après ce qu’on vient de montrer,
ceci est une conséquence immédiate.

Théorème 5.3 (Weierstraß). Soit fn : S → C une suite de fonctions holomorphes définies
sur un ouvert S ⊂ C. Supposons que fn converge uniformément vers une fonction f sur tout
sous-ensemble compact de S.
Alors f est holomorphe et la suite des dérivées f ′n converge aussi uniformément vers f ′ sur
tout compact de S.

En utilisant ce critère, on obtient le théorème suivant.

Théorème 5.4. Soit f ∈A. Alors L f (s) définit une fonction holomorphe dans son demi-plan
de convergence simple.

Comme une autre conséquence du théorème 5.3, on obtient une expression de la déri-
vée de L f (s). En effet, on a

L′f (s) = −
∞
∑

n=1

f (n) log n
ns

,

et cette série converge aussi dans le demi-plan Re(s)> σc.

5.2 Propriétés algébriques des séries de Dirichlet

Pour l’instant on n’a considéré les séries de Dirichlet que comme des fonctions holo-
morphes sans lien avec l’arithmétique. Le théorème le plus important dans ce contexte
.

Théorème 5.5. Soient f , g ∈ A, dont les séries de Dirichlet associées L f et Lg converge
absolument en s ∈ C.
Alors la série de Dirichlet associée à leur convolution L f ∗g converge aussi absolument en s, et
on a

L f ∗g(s) = L f (s)Lg(s).

Preuve. Par la définition de la convolution de Dirichlet il suit immédiatement que

L f (s)Lg(s) =
∞
∑

n1,n2=1

f (n1)g(n2)
n1

sn2
s
=
∞
∑

n=1

1
ns

∑

n1n2=n

f (n1)g(n2) =
∞
∑

n=1

( f ∗ g)(n)
ns

= L f ∗g(s),
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où l’échange des sommes est justifiée par la convergence absolue de L f et Lg au point s.
De même manière on voit que

∞
∑

n=1

�

�

�

�

( f ∗ g)(n)
ns

�

�

�

�

≤
∞
∑

n=1

1
|ns|

∑

n1n2=n

| f (n1)||g(n1)| ≤
∞
∑

n1=1

�

�

�

�

f (n1)
n1

s

�

�

�

�

∞
∑

n2=1

�

�

�

�

g(n2)
n2

s

�

�

�

�

<∞,

ce qui montre la convergence absolue de L f ∗g à s.

Ce résultat montre que la convolution des fonctions arithmétiques correspond à la mul-
tiplication usuelle des séries de Dirichlet. Au vu de ce résultat, il n’est pas surprenant que
la série de Dirichlet associée à e(n), l’élément neutre de la convolution de Dirichlet, soit
égal à la fonction Le(s) = 1 pour tous s ∈ C.

Il y a une série de Dirichlet particulière, qui joue un rôle tellement important dans la
théorie analytique des nombres, que l’on lui a donné son propre nom. C’est la série de
Dirichlet associée à ε, qui est plus connu comme la fonction zêta de Riemann,

ζ(s) :=
∞
∑

n=1

1
ns

.

Il faut noter que l’abscisse de convergence absolue, tout comme l’abscisse de convergence
simple vaut 1, alors pour l’instant cette fonction n’est définie que pour Re(s)> 1.

Les séries de Dirichlet de beaucoup d’autres fonctions arithmétiques s’expriment en
terme de la fonction zêta de Riemann. Comme τ s’écrit comme la convolution e ∗ e, on
voit que

Lτ(s) = ζ(s)
2 pour Re(s)> 1.

En utilisant ce fait, et en utilisant que µ ∗ ε = e, il suit que Lµ(s)ζ(s) = 1, ou en d’autres
mots

Lµ(s) =
1
ζ(s)

pour Re(s)> 1.

Ceci permet de plus d’évaluer la constante C du théorème 3.4. En utilisant le résultat bien
connu

∞
∑

n=1

1
n2
=
π2

6
,

on voit que

C =
∞
∑

n=1

µ(n)
n2
=

1
ζ(2)

=
π2

6
,

et alors la formule asymptotique dans le théorème 3.4 prend la forme

∑

n≤x

ϕ(n) =
6
π2

x2 +O(x log x).

Pour le logarithme, c’est une conséquence de la dérivation d’une série de Dirichlet
(cf 5.4) :

Llog(s) = −ζ′(s) pour Re(s)> 1.
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Concernant la fonction de von Mangoldt Λ(n), par la relation Λ= log∗µ, on obtient

LΛ(s) = −
ζ′(s)
ζ(s)

pour Re(s)> 1.

Finalement, en utilisant l’identité

Lid(s) = ζ(s− 1) pour Re(s)> 2.

on voit que la série de Dirichlet associée à la fonction phi d’Euler ϕ = µ ∗ id est donnée
par

Lϕ(s) =
ζ(s− 1)
ζ(s)

pour Re(s)> 2.

Finalement, une question se pose très naturellement : existe-t-il des fonctions arithmé-
tiques possédant la même série de Dirichlet ?

Théorème 5.6. Soit f et g des fonctions arithmétiques telles que leurs séries de Dirichlet
convergent absolument pour tous Re(s)> σ0 et telles que L f (s) = Lg(s). Alors f = g.

Preuve. Soit h = f − g. Par l’hypothèse, Lh converge pour Re(s) > σ0 et y a la valeur 0.
Alors il faut montrer que h(n) = 0 pour tous n.

Par contradiction, soit n0 le plus petit entier tel que h(n0) = 0. Alors pour σ > σ0, on a

h(n0)
n0
σ
= −

∞
∑

n>n0

h(n)
nσ

et alors

|h(n0)| ≤
∞
∑

n>n0

|h(n)|
n0
σ

nσ
=
∞
∑

n>n0

|h(n)|
�n0

n

�σ0
�n0

n

�σ−σ0

≤
∞
∑

n>n0

|h(n)|
�n0

n

�σ0
�

n0

n0 + 1

�σ−σ0

= n0
σ0

�

n0

n0 + 1

�σ−σ0
∞
∑

n>n0

|h(n)|
nσ0

En laissant σ→∞,
|h(n0)|= 0.

Ce résultat peut souvent être utilisé afin de montrer des relations entre des fonctions
arithmétiques. Par exemple, l’identité

∑

d|n

ϕ(d)
d
=
∑

d|n

µ(d)
d
τ
� n

d

�

,

est équivalente à dire que

Lϕ(s+ 1)Lε(s) = Lµ(s+ 1)Lτ(s),

qui a l’identité triviale
ζ(s)
ζ(s+ 1)

ζ(s) =
1

ζ(s+ 1)
ζ(s)2.
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5.3 Le produit d’Euler

Dans la section précédente, on a vu que la convolution de Dirichlet des fonctions arith-
métiques correspond à la multiplication de séries de Dirichlet. Une autre propriété, pour
laquelle les séries de Dirichlet sont intéressantes est la multiplicativité.

Théorème 5.7. Soit f ∈ A une fonction multiplicative. Si la série de Dirichlet associée à f
converge absolument en s, alors on a l’identité

L f (s) =
∏

p

�

1+
∞
∑

`=1

f (p`s)
p`s

�

, (5.1)

où le produit infini converge absolument. De plus, si f est complètement multiplicative, alors
l’identité se simplifie en

L f (s) =
∏

p

�

1−
f (p)
ps

�−1

. (5.2)

Preuve. Commençons par montrer que le produit infini (5.1) converge absolument, ce qui
équivaut à dire que la somme

∑

p

�

�

�

�

�

∞
∑

`=1

f (p`s)
p`s

�

�

�

�

�

converge. Mais comme L f converge absolument à s, on voit que

∑

p

�

�

�

�

�

∞
∑

`=1

f (p`s)
p`s

�

�

�

�

�

≤
∑

p

∞
∑

`=1

�

�

�

�

f (p`s)
p`s

�

�

�

�

≤
∑

n

�

�

�

�

f (n)
ns

�

�

�

�

<∞.

Ensuite il faut vérifier que la valeur de ce produit vaut L f (s). On pose

Π(s; x) :=
∏

p≤x

�

1+
∞
∑

`=1

f (p`s)
p`s

�

.

Si on note p1, . . . , pr les nombres premiers inférieurs ou égaux à x , alors en utilisant la
multiplicativité de f , on peut écrire Π(x) comme

Π(x) =
∞
∑

`1=0

· · ·
∞
∑

`r=0

f (p`1s) · · · f (p`r s)
p`1s · · · p`r s

=
∞
∑

`1=0

· · ·
∞
∑

`r=0

f (p`1s · · · p`r s)
p`1s · · · p`r s

Si on pose
N(x) := {n ∈ N : p | n⇒ p ≤ x},

par le théorème fondamental de l’arithmétique, on a

|Π(s; x)− L f (s)|=

�

�

�

�

�

∑

n∈N\N(x)

f (n)
ns

�

�

�

�

�

≤
∑

n>x

�

�

�

�

f (n)
ns

�

�

�

�

,

et alors
lim

x→∞
|Π(s; x)− L f (s)|= 0.
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Finalement, on note que si f est complètement multiplicative, alors

∞
∑

`=1

f (p`)
p`s

=
∞
∑

`=1

�

f (p)
ps

�`

=
�

1−
f (p)
ps

�−1

,

ce qui montre (5.2).

Le produit infini (5.1) est appelé le produit d’Euler de L f (s). Il est important de noter
que la représentation d’une série de Dirichlet comme produit d’Euler n’est valide que sur
le demi-plan de convergence absolue.

Comme cas spécial, on applique le théorème 5.7 pour écrire la fonction zêta de Riemann
comme un produit d’Euler. En effet, comme la fonction ε(n) est complètement multipli-
cative, on obtient

ζ(s) =
∏

p

�

1−
1
ps

�−1

pour Re(s)> 1.

5.4 La formule de Perron

Jusqu’ici on a introduit les séries de Dirichlet et on a étudié leur propriétés basiques.
Mais comment peut-on les utiliser afin d’étudier des questions arithmétiques ? Une pos-
sibilité est la formule de Perron. En bref, cette formule nous permet de transformer la
fonction sommatoire d’une fonction arithmétique en une intégrale complexe contenant la
série de Dirichlet associée.

Avant de l’énoncer et de la montrer, on montre d’abord une version préliminaire, qui
concerne l’intégrale suivante :

Ic(y, T ) :=
1

2πi

∫ c+iT

c−iT

y s ds
s

.

Si on définit la fonction δ(y) par

δ(y) :=







0 si 0< y < 1,
1
2 si y = 1,

1 si y > 1,

alors le lemme suivant montre que l’intégrale Ic(y, T ) est une approximation très proche
de cette fonction.

Lemme 5.8. Soient c, y, T > 0 des nombres réels. Alors

|Ic(y, T )−δ(y)| ≤

¨

2y c

1+T | log y| si y 6= 1,
2c

c+T si y = 1.
(5.3)

Démonstration. Supposons d’abord que y = 1. Ici on peut évaluer la valeur de Ic(1, T )
exactement, car

Ic(1, T ) =
1

2π

∫ T

−T

dt
c + i t

=
1

2π

∫ T

0

2c
c2 + t2

dt =
1
π

∫
T
c

0

1
1+ t2

dt =
1
2
−
∫ ∞

T
c

1
1+ t2

dt,
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et alors
�

�

�

�

Ic(1, T )−
1
2

�

�

�

�

≤
∫ ∞

T
c

1
1+ t2

dt ≤min

�

∫ ∞

0

dt
1+ t2

,

∫ ∞

T/c

dt
t

�

=min
�

1,
c
T

�

≤
2c

c + T
,

ce qui montre (5.3) dans ce cas.
Ensuite, supposons que 0 < y < 1. On estimera Ic(y, T ) de deux façons différentes.

Soit r ≥max(1, c). Par le théorème intégral de Cauchy, on peut remplacer l’intégrale

Ic(y, T ) =
1

2πi

∫ r−iT

c−iT

y s ds
s
+

1
2πi

∫ r+iT

r−iT

y s ds
s
+

1
2πi

∫ c+iT

r+iT

y s ds
s

.

Comme 0< y < 1, on a pour tout s avec Re(s) = r,
�

�

�

�

y s

s

�

�

�

�

≤
1
r

,

ce qui nous permet d’estimer le seconde intégrale par
�

�

�

�

�

1
2πi

∫ r+iT

r−iT

y s ds
s

�

�

�

�

�

≤
T
r

.

Or, si on laisse r tendre vers l’infini, on voit que cette intégrale tend vers 0. Alors, on peut
écrire Ic(y, T ) comme

Ic(y, T ) =
1

2πi

∫ ∞−iT

c−iT

y s ds
s
+

1
2πi

∫ c+iT

∞+iT

y s ds
s

.

Alors

|Ic(y, T )| ≤
1
πT

∫ ∞

c

yRe(s) ds ≤
y c

T | log y|
.

Soit maintenant C le cercle de rayon R :=
p

c2 + T 2 centré à l’origine, et soit γ+ le
chemin qui commence à c − iT et va jusqu’à c + iT en suivant le cercle C . Comme la
fonction y s

s est holomorphe dans le demi-plan Re(s) > 0, par le théorème intégral de
Cauchy on a

I(y, T ) =
1

2πi

∫

C

y s ds
s

.

Parce que y < 1, on a
�

�

�

�

y s

s

�

�

�

�

=
yRe(s)

R
≤

y c

R
,

et par conséquent

I(y, T )≤
1

2π
πR

y c

R
< y c ,

ce qui montre (5.3) pour 0< y < 1.
La preuve si y > 1 est similaire.

En laissant T tendre vers l’infini, on obtient le corollaire suivant du lemme 8.7.
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Théorème 5.9 (Formule de Perron). Soient c > 0 et x , T ≥ 1 des nombres réels. Soit f
une fonction arithmétique dont la série de Dirichlet associée converge absolument en s = c.
Alors, pour x 6∈ Z,

∑

n≤x

f (n) =
1

2πi

∫ c+i∞

c−i∞
L f (s)x

s ds
s

.

Cette identité est aussi vraie pour x ∈ Z, si on remplace le dernier terme f (x) par f (x)
2 .

Démonstration. Soit x 6∈ Z. Comme la série de Dirichlet associée à f converge absolument
pour tout Re(s) = c, on peut échanger la somme et l’intégrale,

1
2πi

∫ c+iT

c−iT

L f (s)x
s ds

s
=
∞
∑

n=1

f (n)
1

2πi

∫ c+iT

c−iT

� x
n

�s ds
s

et par Lemme 5.8, on voit que

1
2πi

∫ c+iT

c−iT

L f (s)x
s ds

s
=
∞
∑

n=1

f (n)δ
� x

n

�

+ E(T ),

avec

|E(T )| ≤ 2x c
∞
∑

n=1

| f (n)|
nc
�

1+ T
�

�log
�

x
n

��

�

� .

Le théorème suit en notant que
lim

T→∞
E(T ) = 0.

Le cas x ∈ Z se traite de façon similaire.

En général, l’intégrale en (??) ne converge pas absolument, ce qui pose souvent des
problèmes. C’est pour cette raison qu’en pratique, il est plus utile d’appliquer une version
tronquée de cette formule .

Théorème 5.10 (Formule de Perron, version utile). Soit c > 0, x ,≥ 1 et soit f (n) une
fonction arithmétique dont la série de Dirichlet associée converge absolument en s = c. Alors
on a, pour tous x 6∈ Z,

∑

n≤x

f (n) =
1

2πi

∫ c+iT

c−iT

L f (s)x
s ds

s
+O

�∞
∑

n=1

x c | f (n)|
nc
�

1+ T
�

�log
�

x
n

��

�

�

�

,

où on a aussi la borne suivante pour le terme d’erreur,

∞
∑

n=1

x c | f (n)|
nc
�

1+ T
�

�log
�

x
n

��

�

� �
x c

T

∞
∑

n=1

| f (n)|
nc

+
�

1+
x log x

T

�

max
3x
4 ≤n≤ 5x

4

| f (n)|.

Cette formule est aussi vraie pour x ∈ Z, si on remplace le dernier terme f (x) par f (x)
2 .

Preuve. Comme on avait vu, on a pour tout x ≥ 1,

∑

n≤x

f (n) =
1

2πi

∫ c+iT

c−iT

L f (s)x
s ds

s
+ Ec(x , T ),

avec

|Ec(x , T )| �
∞
∑

n=1

x c | f (n)|
nc
�

1+ T
�

�log
�

x
n

��

�

� + f ([x]).
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On sectionne la somme sur n à droite en trois parties :
∑

|n−x |> x
4

(. . .) +
∑

2≤|n−x |≤ x
4

(. . .) +
∑

|n−x |<2

(. . .) =: E(1)c (x , T ) + E(c)c (x , T ) + E(3)c (x , T ).

Pour |n− x | ≥ x/4 on utilise le fait que | log(x/n)| � 1, et alors

E(1)c (x , T )�
∑

|n−x |≥ x
4

x c | f (n)|
nc T

�

�log
�

x
n

��

�

�
x c

T

∞
∑

n=1

| f (n)|
nc

.

Pour 2≤ |n− x | ≤ x/4, on a

�

�

�log
� x

n

�
�

�

�=
�

�

�log
�

1+
n− x

x

�
�

�

��
|n− x |

x
,

et alors

E(2)c (x , T )�
x c

T

∑

2≤|n−x |≤ x
4

| f (n)|x
nc |n− x |

�
x
T

�

max
2≤|n−x |≤ x

4

| f (n)|
�

∑

2≤|n−x |≤ x
4

1
|n− x |

�
x log x

T
max

2≤|n−x |≤ x
4

| f (n)|.

Finalement, pour la somme qui reste, on la borne trivialement,

E(3)c (x , T )� max
|n−x |≤2

| f (n)|.

Le lemme suit en rassemblant les bornes.
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Chapitre 6

Le théorème de la progression
arithmétique

6.1 Caractères d’un groupe abélien fini

La première étape de la preuve du théorème 3.1 consiste à traduire la condition de
congruence p ≡ a mod q de manière sensible aux methodes analytiques. Les outils prin-
cipaux seront certaines fonctions arithmétiques, appelée les caractères de Dirichlet, qui
sont le sujet de cette séction. On commencera par développer une théorie des caractères
pour des groupes abéliens finis généraux, pour appliquer les résultats aux cas voulus.

Soit G un groupe abélien fini avec élément neutre e.
Un caractère de G est un morphisme de groupe χ : G→ C∗, où C∗ est le groupe multipli-
catif des nombres complexes non nuls.
L’ensemble des caractères de G est noté par Ĝ. Cet ensemble forme lui-même un groupe,
appelé le groupe dual de G, lorsqu’on le munit de la multiplication des fonctions com-
plexes. L’élément neutre est le caractère trivial χ0, défini par χ0(g) = 1 pour tous g ∈ G,
et l’inverse d’un élément χ ∈ Ĝ est l’élément χ, défini par χ(g) := χ(g).

Le théorème suivant montre que G et Ĝ sont isomorphes.

Théorème 6.1. Soit G un group abélien fini et soit Ĝ son groupe dual. Alors G et Ĝ sont
isomorphes. En particulier, on a |G|= |Ĝ|.

Démonstration. Par le théorème de structure des groupes abéliens finis, on sait que G est
isomorphe au produit direct

G ∼=
k
∏

i=1

Z/niZ,

pour certains n1, . . . , nk ∈ Z>0. En conséquence, il existe des éléments g1, . . . , gk ∈ G
d’ordres ord(gi) = ni , tels que tout g ∈ G peut être écrit de façon unique comme suit

g = g1
r1 · · · gk

rk avec 1≤ ri ≤ ni .

Si χ est un caractère de G, on a

χ(g) = χ(g1)
r1 · · ·χ(gk)

rk ,

ce qui montre immédiatement que tout χ ∈ Ĝ est déterminé par ses valeurs en g1, . . . , gk.
De plus, comme gi est d’ordre ni , on a

χ(gi)
ni = χ(gi

ni ) = χ(e) = 1,
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et alors χ(gi) est nécessairement une racine ni-ième de l’unité, ce qui revient à dire qu’il
existe des entiers 1≤ ai ≤ ni tels que

χ(gi) = e2πi
ai
ni . (6.1)

À l’inverse, étant donnés des entiers 1≤ ai ≤ ni , il est clair que la fonction définie par (6.1)
est un caractère de G, et que pour tout choix de a1, . . . , ak on obtient un caractère différent.
Cela prouve que |G|= |Ĝ|.

Il reste à montrer que G et Ĝ sont isomorphes. Pour cela on définit les caractères χi ∈ Ĝ
en posant

χi(gi) = e
2πi
ni et χi(g j) = 1 pour i 6= j.

Évidemment, les caractères χ1, . . . ,χk engendrent tout le groupe Ĝ, et on peut écrire
tout χ ∈ Ĝ de façon unique comme un produit des ces caractères,

χ = χ1
r1 · · ·χk

rk avec 1≤ ri ≤ ni .

En considérant ces faits, il est clair que le morphisme ϕ : G → Ĝ défini par ϕ(gi) := χi
est un isomorphisme entre G et Ĝ.

Une propriété très importante des caractères est le fait qu’ils satisfont les relations d’or-
thogonalité décrites dans le théorème suivant.

Théorème 6.2. Soit G un groupe abélien fini. Alors, pour tout g ∈ G,

∑

χ∈Ĝ

χ(g) =

¨

|G| si g = e,

0 si g 6= e,
(6.2)

et pour tout χ ∈ Ĝ,

∑

g∈G

χ(g) =

¨

|G| si χ = χ0,

0 si χ 6= χ0,
(6.3)

Démonstration. On commence avec (6.3). Le formule est évidemment vraie si χ = χ0.
Alors on peut supposer que χ 6= χ0, auquel cas il existe un élément h ∈ G tel que χ(h) 6= 1.
Or, on a

∑

g∈G

χ(g) =
∑

g∈G

χ(hg) = χ(h)
∑

g∈G

χ(g),

et comme χ(h) 6= 1, cela implique que
∑

g∈G

χ(g) = 0.

Le preuve de (6.2) est très similaire. Le cas g = e est trivial. Si g 6= e, alors il existe un
caractère ψ ∈ Ĝ tel que ψ(g) 6= 1.

∑

χ∈Ĝ

χ(g) =
∑

χ∈Ĝ

(ψχ)(g) =ψ(g)
∑

χ∈Ĝ

χ(g),

et comme avant cela implique que

(1−ψ(g))
∑

χ∈Ĝ

χ(g) = 0.

Comme ψ(g) 6= 1, alors nécessairement la somme sur χ doit être nulle.
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Dans la théorie analytique des nombres, on rencontrera deux sortes de caractères, qui
ont une importance particulière : Les caractères additifs et les caractères multiplicatifs.

Soit q ≥ 1 un entier. Un caractère additif mod q est un caractère du group additif Z/qZ.
Bien qu’un caractère additif ψ ne soit défini que pour des classes d’équivalences mod q,
on peut le voir aussi comme une fonction arithmétique en posant ψ(n) := ψ(n mod q)
pour n ∈ N (par abus de notation on utilise le même symbol pour les deux fonctions). Il
existe q caractères additifs mod q, et comme on a montré dans la preuve du théorème 6.1,
chaque ψ mod q peut être écrit explicitement comme une fonction exponentielle de la
forme

ψ(n) = e2πi an
q avec 1≤ a ≤ q.

Les relations d’orthogonalité prennent la forme

∑

a mod q

e2πi an
q =

¨

q si q | n,

0 si q - n,

pour tout n ∈ Z.
Un caractère multiplicatif mod q est un caractère du groupe multiplicatif (Z/qZ)×.

Comme |(Z/qZ)×| = ϕ(q), il existe ϕ(q) caractéres multiplicatifs mod q. Contrairement
au cas additif, les caractères multiplicatifs ne peuvent pas être écrits en général dans une
forme explicite. Un caractère multiplicatif χ mod q est initialement supporté sur toutes les
classes d’équivalences mod q qui sont premières avec q. Il est néanmoins utile de l’étendre
sur tout Z et le voir comme une fonction arithmétique en définissant

χ(n) :=

¨

χ(n mod q) si (n, q) = 1,

0 si (n, q) 6= 1,
(6.4)

(comme avant, on utilise le même symbole pour les deux fonctions, ce qui en général
ne porte pas de confusion). Une fonction de la forme (6.4) est appelée un caractère de
Dirichlet. Le caractère de Dirichlet qui correspond au caractère trivial χ0 mod q est appelé
le caractère principal mod q, et il est defíni explicitement par

χ0(n) :=

¨

1 si (n, q) = 1,

0 sinon.

Les relations d’orthogonalité prennent ici la forme

∑

χ mod q

χ(n) =

¨

ϕ(q) si n≡ 1 mod q,

0 sinon,
et

∑

n mod q

χ(n) =

¨

ϕ(q) si χ = χ0,

0 si χ 6= χ0,

L’importance des caractères de Dirichlet découle du fait qu’il peuvent être utilisés pour
encoder les relations algébriques en termes de fonctions multiplicatives. En effet, si a et q
sont des nombres entiers premiers entre eux, alors

n≡ a mod q ⇔ an≡ 1 mod q.

Si f est une fonction arithmétique et si (a, q) = 1, on obtient en utilisant les relations
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d’orthogonalité,
∑

n≤x
n≡a mod q

f (n) =
∑

n≤x
an≡1 mod q

f (n)

=
1
ϕ(q)

∑

n≤x

f (n)
∑

χ mod q

χ(an)

=
1
ϕ(q)

∑

χ mod q

χ(a)
∑

n≤x

f (n)χ(n).

Ici, le point crucial est le fait que χ est complètement multiplicatif. Si f est une fonction
multiplicative, alors f χ est aussi une fonction multiplicative.

6.2 Les fonctions L de Dirichlet

Soit χ mod q un caractère de Dirichlet. La série de Dirichlet associée à ce caractère est
définie par

L(s,χ) :=
∞
∑

n=1

χ(n)
ns

.

Cette série converge absolument pour Re(s) > 1 et y définit une fonction holomorphe,
appelée la fonction L de Dirichlet associée à χ. Comme χ est complètement multiplicatif,
on peut écrire L(s,χ) pour Re(s)> 1 aussi comme un produit eulérien,

L(s,χ) =
∏

p

�

1−
χ(p)

ps

�−1

.

On commence avec le fonction zêta de Riemann

ζ(s) :=
∞
∑

n=1

1
ns

,

qui est simplement la fonction L de Dirichlet associée au caractère principal χ0 mod 1.
Bien que initialement cette fonction ne soit définie que pour Re(s)> 1, il est possible de la
prolonger méromorphiquement au demi-plan Re(s) > 0. En effet, en utilisant la formule
sommatoire d’Abel, on obtient

∑

n≤x

1
ns
=
bxc
x s
+ s

∫ x

1

bξc
ξs+1

dξ

=
x1−s

1− s
+

1
s− 1

+ 1− s

∫ ∞

1

ξ− bξc
ξs+1

dξ+O
�

x−Re(s)
�

.

En laissant x tendre vers l’infini, on alors obtient l’identité suivante pour Re(s)> 1,

ζ(s) =
1

s− 1
+ 1− s

∫ ∞

1

ξ− bξc
ξs+1

dξ. (6.5)

Mais l’intégrale sur ξ converge absolument pour tout Re(s) > 0, et par conséquent on
voit que l’expression à droite définit une fonction méromorphe dans ce demi-plan, qui
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est le prolongement méromorphe cherché de la fonction zêta de Riemann. De plus, cette
identité montre que ζ(s) possède un seul pôle simple en s = 1 avec résidue 1.

Les fonctions L de Dirichlet associées aux autres caractères principaux ont un compor-
tement très similaire. En effet, si χ0 et le caractère principal mod q, en utilisant le produit
eulérien on obtient tout de suite

L(s,χ0) =
∏

p

�

1−
χ0(p)

ps

�−1

=
∏

(p,q)=1

�

1−
1
ps

�−1

= ζ(s)
∏

p|q

�

1−
1
ps

�

.

Cette identité montre que L(s,χ0) se prolonge pour tout Re(s)> 0.

Lemme 6.3. Soit χ0 le caractère principal mod q. Alors L(s,χ0) se prolonge méromorphi-
quement au demi-plan Re(s)> 0 avec un seul pôle simple en s = 1 de résidue

Res
s=1

L(s,χ0) =
ϕ(q)

q
.

Pour les fonctions L des caractères non-principaux, la situation est bien différente. On
commence avec l’observation suivante

�

�

�

�

�

∑

n≤x

χ(n)

�

�

�

�

�

≤ q.

qui est une conséquence immédiate des relations d’orthogonalité des caractères de Diri-
chlet et du fait que χ est une fonction périodique de période q. En utilisant encore une
fois la formule sommatoire d’Abel

�

�

�

�

�

∑

n≤x

χ(n)
ns

�

�

�

�

�

=

�

�

�

�

�

1
x s

∑

n≤x

χ(n) + s

∫ x

1

1
x s+1

∑

n≤ξ

χ(n)dξ

�

�

�

�

�

≤
q

xRe(s)
+

q|s|
|Re(s)|

�

1−
1

xRe(s)

�

,

et on voit que la somme est convergente pour tout Re(s). Par conséquent, cela définit une
fonction holomorphe dans le demi-plan Re(s)> 0.

Lemme 6.4. Soit χ mod q un caractère de Dirichlet non-principal. Alors la fonction L de
Dirichlet associée à χ se prolonge analytiquement au demi-plan Re(s)> 0.

Le comportement des fonction L de Dirichlet en s = 1 joue un rôle important dans la
preuve du théorème de la progression arithmétique.

6.3 La preuve du théorème de Dirichlet

Afin de montrer le théorème 3.1, on considèrera la somme

∑

p≤x
p≡a mod q

1
p

,

et on montrera qu’elle est en fait divergente. En n’utilisant que des méthodes élémentaires,
on a déjà montré que c’est vrai pour le cas q = 1, où la somme va sur tous les nombres
premiers.
Pour motiver l’idée de la preuve du théorème de Dirichlet, on donnera maintenant une
deuxième démonstration de ce fait, qui cette fois repose sur les séries de Dirichlet.
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Remarquons qu’en utilisant le produit eulérien de la fonction zêta de Riemann, on peut
écrire log(ζ(s)) pour tout s > 1 comme suit,

log(ζ(s)) = −
∑

p

log
�

1−
1
ps

�

=
∑

p

∞
∑

`=1

1
`p`s

.

Or,
∑

p

∞
∑

`=2

1
`p`s

≤
∑

p

1
p2s

∞
∑

`=0

1
p`s
=
∑

p

1
ps(ps − 1)

≤
∑

p

1
p2

,

et par conséquent

logζ(s) =
∑

p

1
ps
+O(1).

Cela donne une lien entre la fonction log(ζ(s)) et la somme (??). En particulier, comme
log(ζ(s)) tend vers l’infini pour s→ 1+, l’identité montre que la somme des réciproques
des nombres premiers est divergente. C’est aussi une preuve analytique de l’infinité des
nombres premiers.

L’idée initiale du preuve du theoreme 3.1 est très similaire. On utilise les relations d’or-
thogonalité ()

∑

p≤x
p≡a mod q

1
ps
=

1
ϕ(q)

∑

χ mod q

χ(a)
∑

p≤x

χ(p)
ps

.

et pour analyser la dernière somme sur p on utilise l’idée au-dessus.
Alors, comme avant,

log(L(s,χ)) = −
∑

p

log
�

1−
χ(p)

ps

�

+ 2πim.

Ici, il faut faire attention, car le logarithme est complexe. En laissant s→∞, on voit que
m = 0. Alors, on continue

log(L(s,χ)) = −
∑

p

log
�

1−
χ(p)

ps

�

=
∑

p

∞
∑

`=1

χ(p)`

`p`s
=
∑

p

χ(p)
ps
+O(1). (6.6)

Alors
∑

p≡a mod q

1
ps
=

1
ϕ(q)

∑

χ mod q

χ(a)
∑

p

χ(p)
ps

=
1
ϕ(q)

log L(s,χ0) +
1
ϕ(q)

∑

χ mod q
χ 6=χ0

χ(a) log L(s,χ) +O(1).

On a utilisé que

Lemme 6.5. Soit χ mod q un caractère de Dirichlet non-principal. Alors L(1,χ) 6= 0.

6.4 Non-annulation de L(1,χ)

Il reste à montrer le lemme 6.5, qui est vraiment au cœur de la preuve du théorème de
la progression arithmétique de Dirichlet. On commence avec l’observation que pour tout
nombre réel s > 1, on a

∏

χ mod q

L(s,χ)≥ 1. (6.7)
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En effet, en utilisant l’identité (6.6), on obtient

∑

χ mod q

log L(s,χ) =
∑

p

∞
∑

`=1

1
`p`s

∑

χ mod q

χ(p`) = ϕ(q)
∑

p

∞
∑

`=1
p`≡1 mod q

1
`p`s

≥ 0,

et alors (6.7) suit immédiatement en prenant l’exponentielle des deux côtés.
Supposons qu’il existe deux caractères non-principaux différents χ1 et χ2 mod q, dont

la fonction L de Dirichlet associée s’annule en s = 1. En conséquence, la fonction
∏

χ mod q

L(s,χ)

s’annulerait aussi au point s = 1, car L(s,χ0) y a un pôle simple et tout les autres L(s,χ) y
sont holomorphes. Mais cela contredit bien évidemment l’observation (6.7). Alors il existe
au plus un caractère χ mod q tel que L(s,χ) = 0.

Pour tout caractère χ, il est vrai que

L(s,χ) =
∞
∑

n=1

χ(n)
ns
=
∞
∑

n=1

χ(n)
ns
= L(s,χ)

pour Re(s) > 1. En prolongeant méromorphiquement les deux côtes, on voit immédiate-
ment que cette identité est vraie aussi dans le demi-plan Re(s) > 0. En particulier, si χ
est un caractère tel que L(1,χ) = 0, alors on a aussi que L(1,χ) = 0. Comme on a vu
au-dessus, il existe au plus un caractère dont la fonction L de Dirichlet s’annule en s = 1,
ce qui signifie que χ = χ, c’est à dire χ doit être un caractère réel.

Il suffit donc de prouver le lemme 6.5 pour des caractères réels χ 6= χ0. Soit σχ(n) la
fonction arithmétique suivante

σχ(n) :=
∑

d|n

χ(d).

Dans ce qui suit on va considérer l’expression

∑

n≤x

σχ(n)

n
1
2

,

et on va l’estimer de deux façons différents.
Comme σχ(n) est la convolution des deux fonctions arithmétiques bien connues, il est

raisonnable d’employer la méthode hyperbolique de Dirichlet afin de trouver une formule
asymptotique. On commence en écrivant

∑

n≤x

σχ(n)

n
1
2

=
∑

a,b
ab≤x

χ(a)

(ab)
1
2

=
∑

a≤
p

x

χ(a)

a
1
2

∑

b≤ x
a

1

b
1
2

+
∑

b≤
p

x

1

b
1
2

∑

p
x<a≤ x

b

χ(a)

a
1
2

. (6.8)

Pour évaluer les sommes sur a, on note que la formule sommatoire d’Abel nous donne

∑

y1<a≤y1

χ(a)
aσ

=
1

y2
σ

∑

a≤y2

χ(a)−
1

y1
σ

∑

a≤y1

χ(a) +σ

∫ y2

y1

1
ξσ+1

 

∑

a≤ξ

χ(a)

!

dξ

�
1

y2
σ
+

1
y1
σ

.
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En utilisant cette borne supérieure, on peut estimer le second terme en droite de (8.6)
comme suit,

∑

b≤
p

x

1

b
1
2

∑

p
x<a≤ x

b

χ(a)

a
1
2

�
∑

b≤
p

x

1

b
1
2

�√

√ b
x
+

1
x1/4

�

� 1.

Pour évaluer l’autre terme, on utilise la formule d’Euler-Maclaurin

∑

b≤ x
a

1

b
1
2

= 2
s

x
a
+ C +O

�s

a
x

�

pour une certaine constante réelle C . Alors

∑

a≤
p

x

χ(a)

a
1
2

∑

b≤ x
a

1

b
1
2

= 2
p

x
∑

a≤
p

x

χ(a)
a
+ C

∑

a≤
p

x

χ(a)

a
1
2

+O

 

1
p

x

∑

a≤
p

x

1

!

= 2
p

x
∑

a≤
p

x

χ(a)
a
+O(1).

La somme sur a qui reste est convergente, et en utilisant encore une fois (), on peut
l’estimer comme suit,

∑

a≤
p

x

= L(1,χ)−
∑

a≤
p

x

χ(a)
a
= L(1,χ) +O

�

1
p

x

�

.

En tout, on obtient
∑

n≤x

σχ(n)

n
1
2

= 2L(1,χ) +O(1).

Cela signifie que le comportement asymptotique de la somme dépend de la valeur de L(1,χ).
Une deuxième façon d’évaluer la somme est la suivante. Si p est un premier qui divise q,

alors
σχ(p

`) = 1.

Si p - q, alors

σχ(p
`) =

∑̀

j=0

χ(p) j .

on peut caractériser

σχ(p
`) =







`+ 1 si χ(1) = 1,

1 si χ(1) = −1 et ` est pair ,

0 si χ(1) = −1 et ` est impair ,

En particulier, on voit que σχ(p`)≥ 1 pour tout ` pair. En plus, si n est un nombre carré,
alors σχ(n)≥ 1. Alors

∑

n≤x

σχ(n)

n
1
2

≥
∑

n≤x
n est un carré

1

n
1
2

≥
∑

n≤
p

x

1
n
� log x .

Cela montre que la somme devient arbitrairement large, et par conséquent L(1,χ)> 0.
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Chapitre 7

La fonction zêta de Riemann

7.1 La fonction Gamma

La fonction Gamma Γ (s) est définie initialement en posant

Γ (s) :=

∫ ∞

0

e−ξξs−1 dξ. (7.1)

L’intégrale converge absolument dans le demi-plan Re(s)> 0, et alors y définit une fonc-
tion holomorphe. En intégrant par parties, on voit que cette fonction satisfait l’identité

sΓ (s) = Γ (s+ 1), (7.2)

qui nous permet de la prolonger méromorphiquement à tout le plan complexe. En effet, si
on suppose qu’elle est déjà définie dans le demi-plan Re(s)> −n où n est un entier positif,
alors par l’identité (7.2) on peut définir un prolongement au demi-plan Re(s) > −n− 1
en posant

Γ (s) :=
Γ (s+ 1)

s
.

En utilisant ce principe récursivement, on obtient une fonction méromorphe définie sur
le plan complexe qui possède des pôles simples en s = 0,1, 2, . . . avec les résidus

Res
s=−`

Γ (s) =
(−1)`

`!
,

et qui satisfait pour tout s ∈ C l’identité (7.2). En vue de la relation

Γ (n) = (n− 1)! pour n ∈ N,

on peut voir la fonction Gamma aussi comme une généralisation de la factorielle aux
nombres complexes.

Il existe plusieurs représentations différentes de la fonction Gamma à part la représen-
tation initiale comme intégrale (7.1). Le résultat suivant en donne un exemple important.

Théorème 7.1. On a pour tout s ∈ C,

1
Γ (s)

= seγs
∞
∏

`=1

�

1+
s
`

�

e−
s
` , (7.3)

où γ est la constante d’Euler-Mascheroni.
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Preuve. Notons d’abord que le produit infini converge absolument pour tout s ∈ C, puis-
qu’en écrivant l’exponentielle comme une série entière, on voit que

∞
∏

`=1

�

1+
s
`

�

e−
s
` =

∞
∏

`=1

�

1+
s
`

�

�

1−
s
`
+O

�

1
`2

��

=
∞
∏

`=1

�

1+O
�

1
`2

��

<∞.

En fait, il est clair que la convergence est uniforme sur les compacts, ce qui montre que
le RHS de (7.3) définit une fonction holomorphe sur C.
Afin de montrer l’identité (7.3), on peut se restreindre au cas s > 0, car si cette identité est
vrais pour les réels positifs, alors par le théorème d’identité des fonctions holomorphes,
elle est nécessairement vraie pour tout s ∈ C.

On commence en intégrant par parties pour montrer que

∫ 1

0

ξs−1(1− ξ)n dξ=
n
s

∫ 1

0

ξs(1− s)n−1 dξ.

En utilisant cette formule récursivement, on voit que

∫ 1

0

ξs−1(1− ξ)n dξ=
n
s
·

n− 1
s+ 1

·
n− 2
s+ 2

· · ·
1

s+ n− 1

∫ 1

0

ξs+n−1dξ=
n!

s(s+ 1) · · · (s+ n)
,

et en faisant la substitution ξ 7→ ξ
n dans l’intégrale à gauche, cette identité devient

n!ns

s(s+ 1) · · · (s+ n)
=

∫ n

0

ξs−1
�

1−
ξ

n

�n

dξ. (7.4)

Maintenant on veut laisser n tendre vers l’infini. Comme la procédure de prendre cette
limite n’est pas tout à fait triviale, on donne les détails. En définissant la suite de fonc-
tions gn : (0,∞)→ R par

gn(ξ) :=

¨

ξs−1
�

1− ξ
n

�n
si ξ ∈ (0, n),

0 si ξ ∈ [n,∞),

on peut écrire (7.4) comme

∫ ∞

0

gn(ξ)dξ=
n!ns

s(s+ 1) · · · (s+ n)
. (7.5)

Notons d’abord que

lim
n→∞

gn(ξ) = ξ
s−1e−ξ et

∫ ∞

0

�

lim
n→∞

gn(ξ)
�

dξ= Γ (s).

De plus, grâce à l’inégalité bien connue
�

1−
ξ

n

�n

≤ e−ξ,

on voit que les fonctions gn(ξ) sont bornées par

|gn(ξ)| ≤ ξs−1e−ξ.
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Ces faits nous permettent d’utiliser le théorème de la convergence dominée afin de prendre
la limite n→∞ des deux côtés de (7.5), et on obtient

lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
= lim

n→∞

∫ ∞

0

gn(ξ)dξ=

∫ ∞

0

lim
n→∞

gn(ξ)dξ= Γ (s). (7.6)

Ce résultat est essentiellement déjà l’identité (7.3). En effet, on écrivant

s(s+ 1) · · · (s+ n)
n!ns

= sn−s
n
∏

`=1

�

1+
s
`

�

= s exp

�

s

�

n
∑

`=1

1
`
− log n

��

n
∏

`=1

�

1+
s
`

�

e−
s
` ,

et en laissant n tendre vers l’infini, on obtient

1
Γ (s)

= lim
n→∞

sn−s
n
∏

`=1

�

1+
s
`

�

= seγs
n
∏

`=1

�

1+
s
`

�

e−
s
` ,

ce qui est exactement la formule que l’on voulait montrer.

Dans la preuve du résultat précédent, on a implicitement déduit une autre représenta-
tion pour Γ (s), qui mérite son propre théorème.

Théorème 7.2. On a pour tout s ∈ C \Z,

Γ (s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
. (7.7)

Preuve. Pour s > 0, on avait déjà montre cette formule en (7.6). Le fait qu’elle soit vraie
pour tout les nombres complexes se déduit par prolongement méromorphe.

Un corollaire immédiat de cette formule est l’identité suivante.

Théorème 7.3 (Formule de réflexion d’Euler). On a pour tout s ∈ C,

Γ (s)Γ (1− s) =
π

sin(πs)
. (7.8)

Preuve. Par (7.7) on peut écrire la côté gauche comme

Γ (s)Γ (1− s) = lim
n→∞

�

n!ns

s(s+ 1) · · · (s+ n)
·

n!n1−s

(1− s)(2− s) · · · (n+ 1− s)

�

= lim
n→∞

n!2n
s(n+ 1− s)(12 − s2)(22 − s2) · · · (n2 − s2)

= lim
n→∞

1
s

�

1+
1− s

n

�−1 n
∏

`=1

�

1−
s2

`2

�−1

.

Ici, on utilise la formule bien connue

sin(πs)
πs

=
∞
∏

`=1

�

1−
s2

n2

�

,

et le résultat suit immédiatement.
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En utilisant la formule (7.8) avec s = 1/2 et en notant que Γ (1/2)> 0, on obtient

Γ

�

1
2

�

=
p
π. (7.9)

Une autre formule très utile est la suivante.

Théorème 7.4 (Formule de duplication de Legendre). On a pour tout s ∈ C,

Γ (s)Γ
�

s+
1
2

�

=
p
π21−2sΓ (2s).

Preuve. On a

4sΓ (s)Γ
�

s+ 1
2

�

Γ (2s)
= lim

n→∞

n
1
2 (n!)2

(2n)!
2s(2s+ 1) · · · (2s+ 2n)

s(s+ 1) · · · (s+ n) ·
�

s+ 1
2

��

s+ 3
2

�

· · ·
�

s+ 2n+2
2

�

= lim
n→∞

22n+1(n!)2

(2n)!n
1
2

n

s+ n+ 1
2

,

ou en autres mots

Γ (s)Γ
�

s+
1
2

�

= C2−2sΓ (2s) avec C := lim
n→∞

22n+1(n!)2

(2n)!n
1
2

.

Mais en mettant s = 1 et en observant (7.9), il suit que

C = 2
p
π,

et on obtient le résultat cherché.

Plus tard il sera nécessaire de connaître le comportement de la fonction gamma d’une
façon très précise. Dans le cas spécial s ∈ N, c’est à dire pour la factorielle, on a le résultat
classique suivant.

Théorème 7.5 (Formule de Stirling pour la factorielle). On a

n!∼
p

2πn
nn

en
pour n→∞.

Preuve. En utilisant la représentation de la fonction Gamma comme intégrale, on voit que

n!=

∫ ∞

0

e−ξξn dξ.

Ici on fait la substitution ξ 7→ ξ
p

n+ n, ce qui montre que

n!=
nnpn

en

∫ ∞

−
p

n

�

1+
ξ
p

n

�n

e−ξ
p

n dξ,

et le théorème suivra, si on peut montrer que

lim
n→∞

∫ ∞

−
p

n

�

1+
ξ
p

n

�n

e−ξ
p

n dξ=
p

2π.
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Afin de montrer cette égalité, on note que

lim
n→∞

�

1+
ξ
p

n

�n

e−ξ
p

n = lim
n→∞

exp
�

n log
�

1+
ξ
p

n

�

− ξ
p

n
�

= lim
n→∞

exp

�

ξ
p

n−
ξ2

2
+O

�

1
p

n

�

− ξ
p

n

�

= exp

�

−
ξ2

2

�

,

où on a utilisé la série de Taylor du logarithme. En raisonnant similairement comme dans
la preuve du théorème 7.1, il suit que

lim
n→∞

∫ ∞

−
p

n

�

1+
ξ
p

n

�n

e−ξ
p

n dξ=

∫ ∞

−∞
e−

ξ2

2 dξ=
p

2π,

ce qui conclut la preuve.

Pour s ∈ C on a besoin d’un estimation asymptotique pour Γ (s) et c’est le résultat suivant
qui en fournit une.

Théorème 7.6. Soit δ > 0. Alors pour tout s ∈ C dans la région définie par la condi-
tion |arg s| ≤ π−δ on a

log Γ (s) =
�

s−
1
2

�

log s− s+
log2π

2
+O

�

1
|s|

�

, (7.10)

et

Γ (s) =
p

2π ss− 1
2 e−s

�

1+O
�

1
|s|

��

.

Preuve. La preuve de cette formule se produit en deux étapes. Dans un premier temps on
montre que

log Γ (s) =
�

s−
1
2

�

log s− s+
log(2π)

s
+

∫ ∞

0

[ξ]− ξ+ 1
2

ξ+ s
dξ, (7.11)

et après on prouvera la borne suivante pour l’intégrale à droite,
∫ ∞

0

[ξ]− ξ+ 1
2

ξ+ s
dξ�

1
|s|

, (7.12)

qui est vraie pour tout s ∈ C dans la région définie par la condition |arg s| ≤ π− δ. Cela
montrera la première formule, et la deuxième suivra simplement en prenant l’exponen-
tielle.

Afin de prouver (7.11), on considère d’abord l’intégrale

IN (s) :=

∫ N

0

[ξ]− ξ+ 1
2

ξ+ s
dξ, (7.13)

où N est un entier naturel et où on suppose que s ∈ C \ (−∞, 0]. On a

IN (s) =
N−1
∑

n=0

∫ n+1

n

�

n+ s+ 1
2

ξ+ s
− 1

�

dξ

=
N−1
∑

n=0

�

n+ s+
1
2

�

(log(n+ 1+ s)− log(n+ s))− N

=
N−1
∑

n=0

��

n+ s+
1
2

�

log(n+ 1+ s)−
�

n+ s−
1
2

�

log(n+ s)
�

−
N−1
∑

n=0

log(n+ s)− N .
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En notant que la première somme est une somme télescopique, cette dernière expression
se simplifie en

IN (s) =
�

N + s−
1
2

�

log(N + s)−
�

s+
1
2

�

log s−
N−1
∑

n=1

log(n+ s)− N .

À ce point, on transforme les deux derniers termes comme suit,

N +
N−1
∑

n=1

log(n+ s) =
N−1
∑

n=1

�

log
�

1+
s
n

�

−
s
n

�

+
N−1
∑

n=1

s
n
+ N + log((N − 1)!),

et ici on utilise le théorème 7.5 pour évaluer la factorielle,

N + log((N − 1)!) =
�

N −
1
2

�

log N +
1
2

log(2π) + o(1).

Pour finir, on obtient
IN (s) = I (1)N (s) + I (2)N (s) + o(1),

où

I (1)N (s) := −
N−1
∑

n=1

�

log
�

1+
s
n

�

−
s
n

�

− log s− s
N−1
∑

n=1

1
n
+ s log N ,

I (2)N (s) := s log
�

1+
s
N

�

+
�

N −
1
2

�

log
�

1+
s
N

�

−
�

s−
1
2

�

log s−
log(2π)

2
.

À ce point on laisse N tendre vers l’infini. En observant que le théorème 7.1 nous dit
que

lim
N→∞

I (1)N (s) = Γ (s),

et qu’on a en plus

lim
N→∞

I (2)N (s) = s−
�

s−
1
2

�

log s−
log(2π)

2
,

alors on obtient finalement l’identité (7.13).
Il reste à prouver l’estimation (7.12). On pose

Ψ(ξ) :=

∫ ξ

0

�

bηc −η+
1
2

�

dη.

Évidemment on a Ψ(ξ)� 1, et en intégrant par parties on voit que
∫ ∞

0

bξc − ξ+ 1
2

ξ+ s
dξ=

∫ ∞

0

Ψ(ξ)
(ξ+ s)2

dξ�
∫ ∞

0

1
|ξ+ s|2

dξ

Si on pose ϕ := arg(s) avec |ϕ| ≤ π−δ, alors on a
∫ ∞

0

bξc − ξ+ 1
2

ξ+ s
dξ�

1
|s|

∫ ∞

0

1
|ξ+ eiϕ|2

dξ

�
1
|s|

�

∫ 3

0

1
| Im(eiδ)|

dξ+

∫ ∞

3

1
(ξ− 2)2

dξ

�

�
1
|s|

,

ce qui montre (7.12). Cela conclut la preuve.
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Comme un corollaire du théorème précédent, on a le résultat suivant, qui donne une
approximation de la valeur absolue de la fonction gamma dans des bandes verticales.

Corollaire 7.1. Soit σ1, σ2 et t0 des nombres réels tels que σ2 > σ1 et t0 > 0. Alors on a

|Γ (σ+ i t)|=
p

2π|t|σ−
1
2 e−

π
2 |t|
�

1+O
�

1
|t|

��

pour tout s = σ+ it ∈ C tels que σ1 ≤ σ ≤ σ2 et |t| ≥ t0.

Preuve. À venir...

7.2 L’équation fonctionnelle

On a déjà montré comment la fonction ζ(s), définie initialement pour Re(s) > 1, se
prolonge méromorphiquement au demi-plan Re(s)> 0. Mais comme on verra maintenant,
cela n’est pas toute la vérité, car ζ(s) se prolonge en fait au tout le plan complexe. En même
temps, on montrera aussi que cette fonction satisfait une certaine équation fonctionnelle,
qui joue un rôle très important.

Théorème 7.7. La fonction ζ(s) se prolonge méromorphiquement à tout le plan complexe
et y vérifie l’équation fonctionnelle

π−
s
2 Γ
� s

2

�

ζ(s) = π−
1−s

2 Γ

�

1− s
2

�

ζ(1− s). (7.14)

Le seul pôle de ζ(s) se trouve en s = 1, où elle possède un pôle simple de résidu 1.

On note qu’en utilisant les théorèmes (7.3) et (7.9) l’équation fonctionnelle (7.14)
prend aussi la forme

ζ(s) = 2sπs−1 sin
�πs

2

�

Γ (1− s)ζ(1− s). (7.15)

Grâce au fait que la fonction zêta de Riemann et la fonction gamma ne s’annulent pas
dans le demi-plan Re(s) > 1, cette identité montre en particulier que les zéros de ζ(s)
avec Re(s) < 0 se trouvent exactement en s = −2,−4,−6, . . .. On les appelle les zéros
triviaux de ζ(s). Par contre, tout les autres zéros – appelés les zéros non triviaux – doivent
se trouver dans la bande 0≤ Re(s)≤ 1, aussi appelée la bande critique.

En vue de l’équation fonctionnelle, il est parfois utile de définir la fonction

ξ(s) := s(s− 1)π−
s
2 Γ
� s

2

�

ζ(s), (7.16)

qui est aussi appelée la fonction xi de Riemann. C’est une fonction holomorphe définie
sur C et qui satisfait l’équation fonctionnelle

ξ(s) = ξ(1− s). (7.17)

De plus, les zéros de cette fonction sont exactement les zéros non triviaux de ζ(s).
La preuve du théorème 7.7 repose essentiellement sur la formule sommatoire de Pois-

son, qui on utilisera dans la forme simple suivante.
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Théorème 7.8 (Formule sommatoire de Poisson). Soit f : R→ R une fonction lisse telle
que f (ξ)� ξ−N pour tout N ∈ N. Alors on a

∑

n∈Z
f (n) =

∑

n∈Z
f̂ (n),

où f̂ est la transformée de Fourier de f , qui est définie comme

f̂ (n) :=

∫ ∞

−∞
f (ξ)e−2πinξ dξ.

Afin de montrer le théorème 7.7, dans un premier temps on considère la fonction θ :
(0,∞)→ C, qui est définie par la série

θ (x) :=
∑

n∈Z
e−πn2 x .

Notons que cette série converge effectivement pour tout x > 0, car on a

|θ (x)| ≤ 1+

∫ ∞

−∞
e−πξ

2 x dξ≤ 1+
1
p

x
.

En observant que pour x ≥ 1,

∞
∑

n=1

e−πn2 x = e−πx
∞
∑

n=1

e−π(n
2−1)x ≤ e−πx

∞
∑

n=1

e−π(n
2−1)� e−πx ,

on obtient de plus l’estimation suivante,

θ (x) = 1+O
�

e−πx
�

pour x ≥ 1.

La fonction θ (x) vérifie l’équation fonctionnelle suivante, qui est au cœur de la preuve
du Théorème 7.7.

Lemme 7.9. On a pour tout x > 0,

θ (x) =
1
p

x
θ

�

1
x

�

.

Preuve. On commence avec l’utilisation de la formule sommatoire de Poisson à la fonc-
tion ξ 7→ e−πξ

2 x , qui mène à

∑

n∈Z
e−πn2 x =

∑

n∈Z

∫ ∞

−∞
e−πξ

2 x e−2πinξ dξ=
∑

n∈Z

∫ ∞

−∞
e−πx(ξ2−2in ξx ) dξ.

En complétant le carré dans l’exposant, cette dernière expression se transforme en

∑

n∈Z

∫ ∞

−∞
e−πx(ξ2−2in ξx ) dξ=

∑

n∈Z
eπx −n2

x2

∫ ∞

−∞
e−πx(ξ− in

x )
2

dξ.

Dans ce qui suit on évaluera explicitement l’intégrale sur ξ à droite et on montrera que
∫ ∞

−∞
e−πx(ξ− in

x )
2

dξ=
1
p

x
, (7.18)

53



ce qui par conséquent mènera à l’équation fonctionnelle cherchée.
Soit S ≥ 1. Par le théorème des résidus, on a
∫ S

−S

e−πx(ξ− in
x )

2

dξ=

∫ S

−S

e−πxξ2
dξ+ i

∫ 0

− n
x

e−πx(−S+iη)2 dη+ i

∫ − n
x

0

e−πx(S+iη)2 dη.

Pour les deux intégrales sur η on a la borne

i

∫ 0

− n
x

e−πx(−S+iη)2 dη+ i

∫ − n
x

0

e−πx(S+iη)2 dη�
n
x

e−πxS2+πx n2

x2 ,

et en laissant S tendre vers l’infini, on voit alors que
∫ ∞

−∞
e−πx(ξ− in

x )
2

dξ=

∫ ∞

−∞
e−πxξ2

dξ=
1
p

x
.

Cela montre (7.18) et conclut la preuve.

Maintenant on est prêt à prouver le théorème 7.7. En faisant la substitution ξ 7→ πn2ξ
en (7.1), on voit que

Γ
� s

2

�

= πn2

∫ ∞

0

e−πn2ξ(πn2ξ)
s
2−1 dξ,

pour Re(s)> 0, ce qui mene à

π−
s
2 Γ
� s

2

�

n−s =

∫ ∞

0

e−πn2ξξ
s
2−1 dξ.

Ici on somme n sur tous les nombres naturels et on obtient la représentation suivante
de ζ(s) comme intégrale

π−
s
2 Γ
� s

2

�

ζ(s) =
1
2

∫ ∞

0

(θ (ξ)− 1)ξ
s
2

dξ
ξ

,

valide initialement dans le demi-plan Re(s)> 1.
Ici l’idée est d’exprimer l’intégrale à droite qui n’est convergente que dans le demi-

plan Re(s) > 1 de façon à ce qu’elle devienne une expression qui converge pour tout s ∈
C \ {1}. En effet, on écrit

1
2

∫ ∞

0

(θ (ξ)− 1)ξ
s
2

dξ
ξ
=

1
2

∫ 1

0

(θ (ξ)− 1)ξ
s
2

dξ
ξ
+

1
2

∫ ∞

1

(θ (ξ)− 1)ξ
s
2

dξ
ξ

,

et en utilisant l’équation fonctionnelle de θ (x) dans la première intégrale du RHS, cette
expression devient

1
2

∫ 1

0

(θ (ξ)− 1)ξ
s
2

dξ
ξ
=

1
2

∫ 1

0

�

1
p

ξ
θ

�

1
ξ

�

− 1

�

ξ
s
2

dξ
ξ

=
1
2

∫ ∞

1

�
p

ξθ (ξ)− 1
�

ξ−
s
2

dξ
ξ

=
1
2

∫ ∞

1

(θ (ξ)− 1)ξ
1−s

2
dξ
ξ
+

1
s− 1

−
1
s

.
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Après tout on obtient

π−
s
2 Γ
� s

2

�

ζ(s) = −
1

1− s
−

1
s
+

1
2

∫ ∞

1

(θ (ξ)− 1)
�

ξ
s
2 + ξ

1−s
2

� dξ
ξ

.

Ici il faut noter que l’intégrale converge pour tout s ∈ C. Par conséquent le RHS définit
une fonction méromorphe, ce qui nous donne le prolongement méromorphe de ζ(s) décrit
dans le théorème 7.7. De plus, le RHS reste inchangé si on remplace s avec 1− s, ce qui
montre l’équation fonctionnelle (7.14).

En ce qui concerne les pôles de ζ(s), on avait déjà vu que le seul pôle dans le demi-
plan Re(s)> 0 se trouve en s = 1, et que c’est un pôle simple. Par l’équation fonctionnelle
que l’on vient de prouver, et par le fait que Γ (s) a un pôle simple en s = 0, il est pourtant
clair que ζ(s) n’a pas d’autres pôles dans C.

7.3 Fonctions d’ordre 1

On a déjà vu que la fonction ζ(s) s’écrit pour Re(s) > 1 comme un produit infini qui
va sur tous les nombres premiers. Le but de cette section est de prouver une autre repré-
sentation de ζ(s) comme produit infini. Cette fois c’est un produit qui est indexé par ses
zéros et qu’on appelle la factorisation de Hadamard de ζ(s). Comme cette factorisation est
valable pour une classe très générale de fonctions holomorphes, on développera la théo-
rie dans un premier temps pour des fonctions holomorphes générales, afin de l’appliquer
ensuite au cas spécial ζ(s).

Un théorème bien connu de l’analyse complexe dit que tout fonction entière f , qui
satisfait la borne f (s) � |s|α pour un réel α ≥ 0, est en fait un polynôme de degré au
plus α. Le lemme suivant est une variation de ce résultat qui requiert des conditions plus
faibles.

Lemme 7.10. Soient C ,α > 0 des constantes réelles. Si f est une fonction entière qui satisfait
la condition

Re f (s)≤ C(1+ |s|α) pour tout s ∈ C, (7.19)

alors f est un polynôme de degré au plus α.

Preuve. Sans perte de généralité on peut supposer que f s’annule en 0, car sinon on
simplement remplace la fonction f (s) par f (s)− f (0).

Alors on peut exprimer cette fonction comme une série de Taylor

f (s) =
∞
∑

n=1

(an + ibn)s
n

qui converge pour tout s ∈ C. Pour des nombres complexe donnés en coordonnées po-
laires s = re2πiθ la partie réelle de f (s) s’exprime de façon simple comme

Re f (re2πiθ ) =
∞
∑

n=1

an cos(2πnθ )rn −
∞
∑

n=1

bn sin(2πnθ ).

Ici on multiplie les deux côtés par cos(2π`θ ) avec ` ∈ N, et on prend l’intégral sur θ afin
d’obtenir l’identité

2

∫ 1

0

Re f (reiθ ) cos(2π`θ )dθ = a`r
`.
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Notons qu’il suit de même manière que

∫ 1

0

Re f (reiθ )dθ = 0.

En utilisant la condition (7.19), on obtient la borne suivante pour les coefficients a`,

|a`| ≤
2
r j
`

∫ 1

0

|Re f (r je
iθ )|dθ =

2
r j
`

∫ 1

0

�

|Re f (r je
iθ )|+Re f (r je

iθ )
�

dθ

≤
4
r j
`

∫ 1

0

max
�

0, Re f (r je
iθ )
	

dθ � r j
α−`,

et en laissant j tendre vers l’infini, il suit que a` = 0, à condition que ` > α.
Le même raisonnement, en remplaçant cos(2π`θ ) par sin(2π`θ ) dans l’intégrale sur θ ,

montre que b` = 0 pour tout ` > α. Par conséquent on voit que f est bien un polynôme
de degré au plus α comme on voulait le montrer.

Soit f : C → C une fonction entière. On dit que la fonction f est d’ordre borné s’il
existe une constante α≥ 0 telle que f satisfait la condition

f (s) = O(exp(|s|α)) pour tout s ∈ C.

Si f est d’ordre borné, le nombre

inf{α≥ 0 : f (s)� exp(|s|α)}

est appelé l’ordre de f .
Si f est une fonction d’ordre borné qui n’a pas de zéros sur C, le lemme suivant montre

que f doit avoir une forme très spécifique.

Lemme 7.11. Soit f une fonction entière d’ordre borné qui ne s’annule par sur C. Alors elle
est de la forme

f (s) = exp(P(s)),

où P est un polynôme de degré au plus l’ordre de f .

Preuve. Soit α l’ordre de f . Comme f ne s’annule pas, la fonction log f (s) est bien définie
et on a l’estimation

Re log f (s)� |s|α+ε

pour tout ε > 0. Le résultat suit alors en appliquant le lemme 7.10.

Bien sûr il sera nécessaire d’étudier aussi des fonctions d’ordre fini qui possèdent des
zéros. Le théorème suivant se rendra utile pour contrôler les nombres de zéros de telles
fonctions.

Théorème 7.12 (Formule de Jensen). Soit R> 0. Soit f une fonction holomorphe dans un
voisinage du disque {s ∈ C : |s| ≤ R}, qui ne s’annule ni en 0 ni sur le cercle {s ∈ C : |s|= R}.
Alors on a l’égalité

1
2π

∫ 2π

0

log
�

� f (Reiθ )
�

�dθ = log | f (0)|+
∑

ρ

log
R
|ρ|

,

où ρ parcourt l’ensemble de zéros de f de module borné par R, comptés avec multiplicité.
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Preuve. On factorise f en
f (s) = f̃ (s)

∏

ρ

(s−ρ),

où f̃ est une fonction holomorphe, qui ne s’annule pas pour |s| ≤ R. On a alors

log| f (s)|= log
�

� f̃ (s)
�

�+
∑

ρ

log|s−ρ|,

et on voit qu’il suffira de montrer l’énoncé du théorème pour deux cas spéciaux, d’une
part le cas où f est une fonction qui ne s’annule pas pour |s| ≤ R, et d’autre part le cas où
f est de la forme f (s) = s− ζ avec |ζ|< R.

On commence avec le premier cas. Comme on suppose que f ne s’annule pas dans le
disque |s| ≤ R, le logarithme log f (s) est bien défini et holomorphe au voisinage du disque
de rayon R. Par la formule de Cauchy on a alors

log f (0) =
1

2πi

∫

|s|=R

log f (s)
s

ds =
1

2π

∫ 2π

0

log f (Reiθ )dθ ,

en en prenant la partie réelle aux deux côtés,

| log f (0)|=
1

2π

∫ 2π

0

log
�

� f (Reiθ )
�

�dθ .

Ensuite on considère le cas où f est donnée par f (s) = s−ζ avec |ζ|< R. On écrit cette
fonction comme le produit f = f1 f2 avec

f1(s) :=
f (s)

R2 − ζs
et f2(s) := R2 − ζs,

et alors on a

1
2π

∫ 2π

0

log
�

� f (Reiθ )
�

�dθ =
1

2π

∫ 2π

0

log
�

� f1(Reiθ )
�

�dθ +
1

2π

∫ 2π

0

log
�

� f2(Reiθ )
�

�dθ .

On peut évaluer la première intégrale à droite facilement en notant que | f1(s)| = 1/R
pour |s|= R. En ce qui concerne la deuxième, observons que f2 ne s’annule pas dans |s| ≤
R, ce qui nous permet d’appliquer ce qu’on a déjà montré au-dessus. Cela nous donne

1
2π

∫ 2π

0

log
�

� f (Reiθ )
�

�dθ = − log R+ |log f2(0)|= | log f (0)|+ log
R
|ζ|

,

et conclut la preuve.

Le théorème suivant est essentiellement un corollaire simple de la formule de Jensen.

Théorème 7.13. Soit ε > 0. Soit f une fonction entière d’ordre α. Alors pour tout R≥ 1,
∑

|ρ|≤R

1� Rα+ε,

où la somme va sur tous les zéros de f de module borné par R, comptés avec multiplicité.
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Preuve. Sans perte de généralité on peut supposer que f (s) 6= 0, car sinon on peut rempla-
cer f (s) par la fonction f (s)s−m pour un entier m convenable. De plus, on peut supposer
que f ne s’annule pas sur le cercle de rayon 3R, car sinon on remplace R simplement
par R+δ avec un réel δ ∈ (0, 1].

Par la formule de Jensen et par le fait que f est d’ordre α, il suit alors

∑

|ρ|≤R

1≤
∑

|ρ|≤3R

log
3R
|ρ|
= − log | f (0)|+

1
2π

∫ 2π

0

log | f (3Reiθ )|dθ � Rα+ε,

ce qui est déjà l’estimation que l’on veut montrer.

Une conséquence immédiate de ce résultat est que si f est une fonction entière d’ordreα,
alors la somme

∑

ρ

1
1+ |ρ|α+ε

est convergente pour tout ε > 0, où la somme va comme d’habitude sur tous les zéros
de f , comptés avec multiplicité.

Maintenant on a tous les outils afin de prouver le résultat principal de cette section.

Théorème 7.14 (Factorisation de Hadamard). Soit f une fonction entière d’ordre au plus 1.
On pose k = 0 si f (0) 6= 0, et sinon on définit k comme l’ordre du zéro en 0 de f . Alors il
existe des constantes A, B ∈ C telles que

f (s) = eA+Bssk
∏

ρ

�

1−
s
ρ

�

e
s
ρ , (7.20)

où ρ parcourt l’ensemble de zéros de f non nuls et où le produit converge uniformément sur
les compacts de C.

Preuve. Sans perte de généralité on peut supposer que f (0) 6= 0.
Soit K un compact de C. Le nombre de zéros de f contenu dans K est fini, et on a

�

1−
s
ρ

�

e
s
ρ = 1+O

�

1
|ρ|2

�

uniformément pour tout s ∈ K et tous les zéros ρ 6∈ K . Par la remarque suivant le théo-
rème 7.13, il suit que le produit

P(s) :=
∏

ρ

�

1−
s
ρ

�

e
s
ρ

converge sur les compacts de C et définit une fonction entière.
En particulier, le quotient f (s)/P(s) est une fonction entière qui ne s’annule pas sur C.

On montre maintenant que cette fonction est d’ordre au plus 1. Au vu du lemme 7.11,
cela montrera le théorème.

Comme on a déjà par l’hypothèse une borne pour f (s), ce qui est nécessaire est une
borne inférieure pour P(s). Soit ε > 0, et supposons pour le moment que R soit un réel
positif tel que

|R− |ρ||>
1
|ρ|2

pour tout les zéros ρ. (7.21)

On estime P(s) sur le cercle |s|= R.
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Pour les zéros ρ tels que |ρ| ≤ R/2, on a
�

�

�

�

�

1−
s
ρ

�

e
s
ρ

�

�

�

�

≥
��

�

�

�

s
ρ

�

�

�

�

− 1

�

e−
�

�

�

s
ρ

�

�

�

> exp
�

−
R
|ρ|

�

,

est par conséquent on a pour R suffisamment grand,
�

�

�

�

�

�

∏

|ρ|≤ R
2

�

1−
s
ρ

�

e
s
ρ

�

�

�

�

�

�

> exp



−
∑

|ρ|≤ R
2

1
|ρ|



> exp

�

−R1+ε
∑

ρ

1
|ρ|1+ε

�

> exp
�

−R1+2ε
�

.

(7.22)
Si ρ est un zéro tel que |ρ|> 2R, alors un utilise l’inégalité

�

�(1− ζ)eζ
�

�> e−c|ζ|2 pour |ζ|<
1
2

,

qui est vraie si la constante c est choisie suffisamment petite. Alors
�

�

�

�

�

∏

|ρ|>2

�

1−
s
ρ

�

e
s
ρ

�

�

�

�

�

> exp

 

−c
∑

|ρ|>2R

|R|2

|ρ|2

!

> exp

�

−cR1+ε
∞
∑

n=1

1
|s|1+ε

�

> exp
�

−R1+2ε
�

.

(7.23)
Finalement, pour les zéros ρ tels que R/2 < |ρ| ≤ 2R, on utilise la condition (7.21),

qui mène à
�

�

�

�

�

1−
s
ρ

�

e
s
ρ

�

�

�

�

≥ e−2

�

�

�

�

1−
s
ρ

�

�

�

�

≥ e−2 |R− |ρ||
2R

>
1

2e2R3
,

et comme il y a au plus O
�

R1+ε
�

zéros ρ tels que R/2≤ |ρ| ≤ 2R, il suit que

∏

R
2<|ρ|≤2R

�

1−
s
ρ

�

e
s
ρ > (2e2R3)−R1+ε

> exp
�

−R1+ε
�

. (7.24)

En somme, en rassemblant les estimations (7.22), (7.23) et (7.24), on obtient

|P(s)|> exp
�

−3R1+2ε
�

> exp
�

−R1+3ε
�

pour R suffisamment large. Comme f est d’ordre 1, il suit que

f (s)
P(s)

� exp
�

R1+4ε
�

pour |s|= R. (7.25)

Notons maintenant que grâce au fait que la somme
∑

ρ

1
|ρ|2

est convergente, il est possible de trouver une suite de réels {R j} j∈N telle que

lim
j→∞

R j =∞ et |R j+1 − R j | ≤ 1 pour tout j ∈ N.

En appliquant l’estimation (7.25) pour les valeurs de cette suite et en utilisant le principe
du maximum, il suit que

f (s)
P(s)

� exp
�

(|s|+ 1)1+4ε
�

� exp
�

|s|1+5ε
�

,

et on voit enfin que f (s)/P(s) est en effet une fonction d’ordre au plus 1.
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On avait déjà vu quelques exemples de factorisation de Hadamard de fonctions en-
tières. En particulier, la représentation donnée au théorème 7.1 n’est rien d’autre que
la factorisation de Hadamard de l’inverse de la fonction gamma. Aussi la formule bien
connue

sin(πs)
πs

=
∞
∏

`=1

�

1−
s2

n2

�

est simplement la factorisation de Hadamard du sinus (cf série 11.1). Dans la section
suivante on étudiera la factorisation de Hadamard ξ(s).

7.4 La factorisation de Hadamard de ξ(s)

Aussi la fonction ξ(s) possède une factorisation de Hadamard. Afin de pouvoir consta-
ter les résultats de manière simple, dans tout la suite on adopte la convention que la
variable ρ dans des sommes et produits comme par exemple

∑

ρ

(. . .) ou
∏

ρ

(. . .)

dénote seulement les zéros non triviaux de ζ(s), compté avec multiplicité.

Théorème 7.15 (Factorisation de Hadamard de ξ(s)). On a

ξ(s) = eBs
∏

ρ

�

1−
s
ρ

�

e
s
ρ , (7.26)

où B est une constante complexe.

Preuve. Comme la fonction ξ(s) est entière, afin d’appliquer le théorème 7.14, il faut
seulement vérifier qu’elle est d’ordre au plus 1. Grâce à l’équation fonctionnelle (7.17), il
suffit d’estimer la fonction ξ(s) dans le demi-plan Re(s)≥ 1/2. Par le corollaire 7.1, on a

Γ
� s

2

�

� e|s| log |s|.

Afin d’estimer ζ(s), on utilise sa représentation comme intégrale (6.5) et on obtient

(s− 1)ζ(s)� |s|2. (7.27)

Les autres facteurs se bornent de façon triviale, et on voit qu’en effet ξ(s) est une fonction
d’ordre au plus 1.

Le théorème 7.14 nous dit qu’alors ξ(s) s’exprime comme le produit infini (7.26) sauf
qu’il y a encore une constante A dans l’exposant. Mais en notant que

ξ(0) = ξ(1) = lim
s→1
(s− 1)ζ(s) = 1,

il suit que A= 1 et le théorème est montré.

Il s’avèrera que les zéros non triviaux de ζ(s) jouent un rôle pertinent pour la répartition
des nombres premiers. On finit ce chapitre avec quelques résultats simples sur ces zéros,
qui sont des conséquences de la théorie développée dans la section précédente.

Jusqu’ici on ne sait même pas s’il existe des zéros non triviaux. Le théorème suivant
montre qu’en fait il en existe un nombre infini.
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Théorème 7.16. L’ensemble des zéros non triviaux de ζ(s) est infini. De plus, la somme

∑

ρ

1
|ρ|σ

(7.28)

est convergent pour tout σ > 1, mais divergente pour σ = 1.

Preuve. Le fait que la somme (7.28) converge pour σ > 1 est une consequence du Théo-
rème 7.13. Supposons qu’elle converge aussi pour σ = 1. En utilisant l’inégalité

�

�(1− ζ)eζ
�

�< e2|ζ| pour tout ζ ∈ C,

il suit que

ξ(s)� exp(C |s|) avec C :=

�

|B|+ 2
∑

ρ

1
|ρ|

�

.

Par contraire, on a pour s réel et suffisamment large

ξ(s)> exp
�

s log s
4

�

.

Alors la somme (7.28) doit être divergente pour σ = 1, et par conséquent il doit exister
un nombre infini des zéros non triviaux de ζ(s).

Une conséquence de ce résultat est que la limite

lim
x→∞

∑

|ρ|≤x

1
ρ

(7.29)

est convergente, car ρ est un zéro non trivial de ζ(s), alors sa conjugué ρ l’est aussi, et
on a

0≤
1
ρ
+

1
ρ
=

2 Reρ
|ρ|2

≤
2
|ρ|2

.

On utilisera la notation
∑

ρ

1
ρ

pour désigner la limite (7.29), mais il faut toujours se souvenir cette somme ne converge
pas absolument et que sa valeur dépend de l’ordre de la sommation.

Maintenant, on peut aussi évaluer la constante b en termes des zéros non triviaux
de ζ(s). On commence par prendre la dérivée logarithmique sur les deux côtés de (7.26),
ce qui mène à

ξ′

ξ
(s) = B +

∑

ρ

�

1
s−ρ

+
1
ρ

�

. (7.30)

Par l’équation fonctionnelle de la dérivée logarithmique de ξ(s), qui prend la forme

ξ′

ξ
(s) = −

ξ′

ξ
(1− s),

on a aussi
ξ′

ξ
(s) = −B −

∑

ρ

�

1
1− s−ρ

+
1
ρ

�

. (7.31)
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En comparant (7.30) et (7.31), on obtient l’expression suivante pour la constante B,

B = −
∑

ρ

1
ρ
+

1
2

�

∑

ρ

1
ρ − s

−
∑

ρ

1
1−ρ − s

�

= −
∑

ρ

1
ρ

,

où on a utilisé le fait que si ρ est un zéro de ζ(s), alors 1−ρ l’est aussi.
Ensuite, il sera nécessaire d’avoir une estimation pour le nombre de zéros non triviaux

avec partie imaginaire bornée par une constante. Cela se fera en utilisant la formule de
Jensen, et on aura besoin d’une estimation pour ζ(s), donnée dans le lemme suivant.

Lemme 7.17. Il existe une constante k > 0 telle que

ζ(s)� tk

pour tout s ∈ C dans la région σ ≥ −5 et |t| ≥ 1.

Preuve. Pour σ ≥ 2 on a bien évidemment ζ(s)� 1. Comme on avait déjà vu en (7.27),
on a pour 1/2≤ σ ≤ 2,

ζ(s)� |s|2� t2.

Finalement, pour−5≤ σ ≤ 1/2 la borne découle de l’équation fonctionnelle et des bornes
déjà montrées.

On désigne par N(T ) le nombre de zéros non triviaux de ζ(s), comptés avec leur mul-
tiplicité, qui ont une partie imaginaire bornée par un réel T ≥ 0. En autres mots,

N(T ) :=
∑

ρ: | Im(ρ)|≤T

1.

Le lemme suivant donne une estimations très simple de N(T ).

Lemme 7.18. On a pour T ≥ 2,

N(T )− N(T − 1)� log T et N(T )� T log T. (7.32)

Preuve. Soit τ := 2+ iT , et soit r ∈ [3, 4] tel que

ζ
�

τ+ re2πiθ
�

6= 0 pour tout θ ∈ R.

Par la formule de Jensen et Lemme 7.17, on a

∑

ρ: |ρ−τ|≤r

log
r

|ρ −τ|
=

1
2π

∫ 2π

0

log
�

�ζ
�

τ+ reiθ
��

�dθ − log|τ| � log T.

En observant que la distance entre le point τ et tous les zéros ρ avec | Imρ − T | ≤ 1 est
bornée par

p
5< 3, on obtient

N(T )− N(T − 1)≤
�

log
r
p

5

�−1 ∑

ρ: |ρ−τ|≤
p

5

log
r

|ρ −τ|

≤
�

log
r
p

5

�−1 ∑

ρ: |ρ−τ|≤r

log
r

|ρ −τ|
� log T,

montrant la première estimation en (7.32). La deuxième en est une conséquence immé-
diate.
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Chapitre 8

Le théorème des nombres
premiers

Maintenant on a tous les outils pour donner la preuve du théorème des nombres pre-
miers. En résumé, l’idée est d’utiliser la formule de Perron pour écrire la fonction ψ(x)
comme une intégrale complexe de la forme

ψ(x) = −
1

2πi

∫ c+i∞

c−i∞

ζ′

ζ
(s)

x s

s
ds pour x 6∈ Z,

avec c > 1, et alors de déplacer la ligne d’intégration à gauche à travers la ligne Re(s) = 1.
Ensuite on déplace la ligne d’intégration à gauche et finalement laisse c tendre vers l’infini.
Le résidu en s = 1, que l’on rassemblera dans cette procédure, donnera le terme principal
de la formule asymptotique.

Mais on peut aussi aller en dehors, et laisser c tendre vers l’infini en rassemblant tout les
autres pôles de ζ′/ζ (s). La formule qui résulte de cette procédure, mène non seulement
à une formule asymptotique pour ψ(x) plus forte, mais en plus elle montre de manière
plus claire le lien entre la répartition des nombres premiers et les zéros de ζ(s) . Cette
formule est connue comme la formule explicite.

8.1 La dérivée logarithmique de ζ(s)

Comme on a déjà vu, la série de Dirichlet associée à la fonction de von Mangoldt Λ(n)
est donnée par

LΛ(s) = −
ζ′

ζ
(s),

ce qui nécessite l’étude de la dérivée logarithmique de ζ(s) dans un certain détail, qui est
le but de cette section.

Commençons par mentionner que la dérivée logarithmique de ζ(s) a un pôle simple
en s = 1 de résidu −1 qui découle du pôle de ζ(s), et que tout les autres pôles se trouvent
exactement aux points où ζ(s) s’annule. Afin de pouvoir effectuer l’idée décrite au-dessus,
il est pertinent de limiter la zone où on peut trouver ces pôles. On fera cela dans la sec-
tion suivante, mais ici on s’intéresse plutôt au comportement général de ζ′/ζ (s) dans les
différentes régions du plan complexe.
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En ce qui concerne le comportement dans le demi-plan Re(s)≥ 2, il n y a pas beaucoup
à dire, car on peut y borner cette fonction simplement par

�

�

�

�

ζ′

ζ
(s)

�

�

�

�

≤
∞
∑

n=1

log n
n2
� 1. (8.1)

Par l’équation fonctionnelle cela nous donne aussi une borne dans le demi-plan Re(s) ≤
−1, puisqu’en prenant la dérivée logarithmique aux deux côtés de (7.15) et en utilisant
le théorème 7.3, on voit que

ζ′

ζ
(1− s) = log2π−

Γ ′

Γ
(s) +

π

2
tan
�πs

2

�

−
ζ′

ζ
(s),

et par (8.1) et la formule de Stirling, on obtient alors la borne

ζ′

ζ
(s)� log |s|, (8.2)

qui est valide dans la région donnée par les conditions

Re(s)< −1 et |s+ 2n|>
1
4

pour tout n ∈ N.

Il reste à déterminer le comportement dans la bande −1< Re(s)< 2, ce qui est en fait
le cas le plus important.
On donne le résultat dans le lemme suivant.

Lemme 8.1. On a, pour tout s = σ+ it ∈ C avec −1< σ < 2 et |t| ≥ 1,

ζ′

ζ
(s) =

∑

ρ: | Im(s−ρ)|<1

1
s−ρ

+O(1+ | log s|).

Preuve. Notons d’abord qu’à cause de la relation

ζ′

ζ
(s) =

ζ′

ζ
(s) pour s ∈ C,

il suffit de traiter le cas t ≥ 1.
En utilisant la formule intégrale de Cauchy, on peut prendre la dérivée des deux côtés

de (7.10), et on obtient la formule asymptotique

Γ ′

Γ
(s) = log s+O

�

1
|s|

�

. (8.3)

Ensuite, on prend la dérivée logarithmique des deux côtés de (7.16), et par (7.30) et (8.3),
on voit que

ζ′

ζ
(s) =

∑

ρ

�

1
s−ρ

+
1
ρ

�

+O(log t).

Ici on utilise cette formule avec s = 2+ it, et après le soustraire de la même expression
(?)

ζ′

ζ
(s) =

∑

ρ

�

1
s−ρ

−
1

2+ it −ρ

�

+O(log t). (8.4)
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Pour tous les ρ avec | Imρ − t| ≤ 1, on a
∑

ρ: | Imρ−t|≤1

1
|2+ it −ρ|

≤
∑

ρ: | Imρ−t|≤1

1� log t, (8.5)

où on a utilisé le théorème 7.18. En ce qui concerne les ρ avec | Imρ− t|> 1, notons que

|s−ρ| � |t − Imρ|.

Alors
1

s−ρ
−

1
2+ it −ρ

=
2−σ

(s−ρ)(2+ it −ρ)
�

1
|t − Imρ|2

.

et pour tout n ∈ Z \ {0,−1},
∑

ρ: n≤Imρ−t≤n+1

�

1
s−ρ

−
1

2+ it −ρ

�

�
∑

ρ: n≤Imρ−t≤n+1

1
|t − Imρ|2

�
log |t + n|

n2
,

où on a utilisé encore une fois le théorème 7.18. En sommant sur n, cela nous donne
l’estimation

∑

ρ: | Imρ−t|>1

�

1
s−ρ

−
1

2+ it −ρ

�

� log t. (8.6)

Le résultat suit en combinant la formule (8.4) avec les estimations (8.5) et (8.6).

8.2 La formule explicite

Ici on se met à déduire rigoureusement la formule explicite déjà mentionnée au-dessus.
Afin de la formuler de manière convenable, définissons

ψ0(x) :=

¨

ψ(x) si x 6∈ Z,
ψ(x)− Λ(x)2 si x ∈ Z.

Alors la formule explicite est donnée dans le théorème suivant.

Théorème 8.2 (Formule explicite). On a, pour x > 2,

ψ0(x) = x −
∑

ρ

xρ

ρ
−
ζ′

ζ
(0)−

1
2

log
�

1−
1
x2

�

.

Afin de prouver le théorème des nombres premiers, il sera avantageux de travailler
plutôt avec une formule un peu différente, où on n’aura pas à faire avec une série qui ne
converge que conditionnellement. Le théorème suivant est une sorte d’approximation à
la formule explicite, qui est plus simple à utiliser, et à partir duquel on obtient aussi le
théorème 8.2 comme un corollaire immédiat.

Théorème 8.3 (Formule explicite pour ψ0(x), version utile). On a, pour x , T > 2,

ψ0(x) = x −
∑

ρ: | Imρ|<T

xρ

ρ
−
ζ′

ζ
(0)−

1
2

log
�

1−
1
x2

�

+ R(x , T ), (8.7)

où le terme d’erreur R(x , T ) est borné par

R(x , T )�
x
T
(log x T )2 + (log x)min

�

1,
x

T 〈x〉

�

,

avec
〈ξ〉 :=min

��

�ξ− p`
�

� : p ∈ P, ` ∈ N, ξ 6= p`
	

.
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Preuve. On commence en utilisant le théorème 5.10 avec c = 1+ (log x)−1, ce qui nous
donne

ψ0(x) = −
1

2πi

∫ c+iT

c−iT

ζ′

ζ
(s)x s ds

s
+O

�∞
∑

n=1

x cΛ(n)

nc
�

1+ T
�

�log
�

x
n

��

�

�

�

.

À partir d’ici, la preuve se déroulera en deux étapes. D’abord on estimera le terme d’erreur
en montrant que

∞
∑

n=1

x cΛ(n)

nc
�

1+ T
�

�log
�

x
n

��

�

� �
x(log x)2

T
+min

§

log x ,
x log x
T 〈x〉

ª

. (8.8)

Ensuit, on montrera que

−
1

2πi

∫ c+iT

c−iT

ζ′

ζ
(s)x s ds

s
= (8.9)

Pour montrer (8.8), on sectionne la somme en trois parties,

Σ1 :=
∑

n∈N
n 6∈(x/2,2x)

(. . .), Σ2 :=
∑

n∈N
n∈(x/2,x]

(. . .) et Σ2 :=
∑

n∈N
n∈(x ,2x)

(. . .).

Dans la somme Σ1 on a |log(x/n)| � 1, ce qui nous permet de la borner simplement par

Σ1�
x
T

∞
∑

n=1

Λ(n)
nc
�

x
T

�

�

�

�

ζ′

ζ
(c)

�

�

�

�

�
x log x

T
,

où la dernière inégalité suit du fait que ζ′/ζ (s) possède un pôle simple en s = 1.
Afin d’estimer la deuxième somme Σ2, on pose

x0 :=max
�

p` : p ∈ P, ` ∈ N, p` < x
	

.

Notons que l’on a Λ(n) = 0 pour tout x0 < n< x , et que par conséquent on peut supposer
que x/2< x0 < x , car sinon la somme vaudrait 0. Pour x/2< n< x0 on a

log
� x

n

�

≥ log
� x0

n

�

= − log
�

1−
x0 − n

x0

�

≥
x0 − n

x0
,

et alors
∑

x/2<n<x0

x cΛ(n)

nc
�

1+ T
�

�log
�

x
n

��

�

� �
x0

T

∑

n<x0

Λ(n)
x0 − n

�
x(log x)2

T
.

On l’estime le terme à n= x0 en observant que

log
�

x
x0

�

− log
�

1−
x − x0

x

�

≥
x − x0

x
≥
〈x〉
x

,

par
x cΛ(x0)

x0
c(1+ T |log(x/x0)|)

�min
§

log x ,
x log x
T 〈x〉

ª

.

En somme, on obtient

Σ2�
x(log x)2

T
+min

§

log x ,
x log x
T 〈x〉

ª

.
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La même borne s’applique aussi à la somme Σ3, comme on peut montrer de façon
similaire. En résumé, ces estimations nous donnent (8.8).

On prouve maintenant (8.9). Observons que si ω est un zéro de ζ(s), alors

Res
s=ω

�

ζ′

ζ
(s)

x s

s

�

=
xω

ω
.

De plus, on a

Res
s=0

�

ζ′

ζ
(s)

x s

s

�

=
ζ′

ζ
(0) et Res

s=1

�

ζ′

ζ
(s)

x s

s

�

= −x .

Sans perte de généralité on peut supposer que T 6= Imρ pour tous les zéros non tri-
viaux ρ de ζ(s). Soit U ∈ N un entier impair. Par le théorème des résidus, on a

1
2πi

∫ c+iT

c−iT

ζ′

ζ
(s)

x s

s
ds = −x +

∑

|ρ|<T

xρ

ρ
−
∑

n≤U/2

x−2n

2n
+ I1 + I2 + I3,

où on a posé

Ii :=
1

2πi

∫

γi

ζ′

ζ
(s)

x s

s
ds,

et où on note γ1 le chemin de c− iT à −U − iT , γ2 le chemin de −U − iT à −U + iT , et γ3
le chemin de −U + iT, c + iT .

L’intégrale I2 est la plus simple, car on a par (8.2),

I2�
∫ T

−T

log U
x−U

U
dt �

T log U
U xU

.

L’estimation des deux autres intégrales est plus difficiles, car les lignes d’intégrations
peuvent passer trop près des pôles de ζ′/ζ (s). Afin d’éviter cette situation, notons que par
le théorème 7.18 il y a au plus O(log T ) zéros ρ dans l’intervalle [T−1, T+1]. En particu-
lier, il est toujours possible de trouver T̃ ∈ [T−1, T+1] qui satisfait la borne | Imρ− T̃ | �
(log T̃ )−1 pour tous les zéros ρ. Par conséquent, en prouvant la formule (8.7), on peut
toujours supposer que T satisfait la borne

| Imρ − T | �
1

log T
, (8.10)

car sinon on simplement remplace T par T ′ en estimant l’erreur qui se produit à la côté
droit de (8.7) par

∑

ρ: | Imρ−T |<1

xρ

ρ
�

x log T
T

.

Par le lemme 8.1 on a pour tout s = σ+ iTn avec −1≤ σ ≤ 2 l’estimation
�

�

�

�

ζ′

ζ
(s)

�

�

�

�

� log Tn +
∑

ρ: | Imρ−Tn|<1

1
|s−ρ|

� (log Tn)
2,

où on a utilisé encore une fois le théorème 7.18. Alors

I1 + I3�
∫ −1+iTn

c+iTn

(log Tn)2

Tn
|x s|ds+

∫ −U+iTn

−1+iTn

log |s|
|s|
|x s|dσ

�
(log Tn)2

Tn

∫ c

−∞
xσ dσ�

(log Tn)2

Tn

x
log x

.
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Notons que tout ces estimations sont uniformes en U . Alors en laissent U tendre vers
l’infini, on voit que

1
2πi

∫ c+iTn

c−iTn

ζ′

ζ
(s)

x s

s
ds = −x +

∑

|ρ|<T

xρ

ρ
−
∞
∑

n=1

x−2n

2n
+O

�

x
Tn
(log x Tn)

2
�

,

ce qui n’est rien d’autre que la formule (8.9) pour le cas T = Tn, si on note que

∞
∑

`=1

x−2`

2`
= −

1
2

log
�

1−
1
x2

�

.

Cela conclut la preuve.

8.3 La zone de non-annulation

La formule explicite nous a montré comment la répartition des nombres premiers est
liée étroitement aux zéros de la fonction zêta de Riemann. Afin de pouvoir déduire une
formule asymptotique pour ψ(x), il est ainsi indispensable de connaître la position des
zéros ainsi précisément que possible. Le but de cette section est de déduire une partie de
la bande critique, où ζ(s) ne s’annule pas.

La base de tout ce qu’on dira sur les zones de non-annulation est l’identité élémentaire
suivante, qui au premier abord apparaît insignifiante :

3+ 4 cosα+ cos2α= 2(1+ cosα)2 ≥ 0 pour tout α ∈ R (8.11)

Dans un premier temps, on montre, en utilisant cette identité, que ζ(s) ne s’annule pas
sur la ligne Re(s) = 1.

Théorème 8.4. On a ζ(1+ it) 6= 0 pour tout t ∈ R \ {0}.

Preuve. En écrivant ζ(s) comme produit d’Euler et en prenant ensuite la valeur absolue,
on obtient pour σ > 1,

|ζ(σ+ it)|= exp

�

∑

p

∞
∑

`=1

cos(`t log p)
`p`σ

�

.

Par l’identité (8.11), il suit que

ζ(σ)3|ζ(σ+ it)|4|ζ(σ+ 2it)|= exp

�

∑

p

∞
∑

`=1

3+ 4 cosα+ cos 2α
`p`σ

�

≥ 1. (8.12)

Supposons, en raisonnant par l’absurde, que ζ(s) aurait un zéro en s = 1+ it0. Comme
le pôle de ζ(s) en s = 1 est simple, il suit que

lim
σ→1
σ>1

ζ(σ)3|ζ(σ+ it0)|4|ζ(σ+ 2it0)|= 0.

Mais cela contredit l’inégalité (8.12), que l’on vient de montrer.

Le résultat précédent est déjà suffisant pour déduire le théorème des nombres premiers
dans sa version la plus faible. Mais en utilisant la théorie développée dans les sections
précédentes, il est possible de déduire une zone de non-annulation considérablement
plus large.
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Théorème 8.5. Il existe une constante C > 0 telle que

Reρ < 1−
C

1+ log | Imρ|

pour tout les zéros non triviaux ρ de ζ(s).

Preuve. On commence avec l’observation, que pour tout s ∈ C,

1
ns
=

cos(t log n)
nσ

− i
sin(t log n)

nσ
.

En utilisant cela en combinaison avec (8.11), on obtient l’inégalité

Re
�

−4
ζ′

ζ
(σ+ it)−

ζ′

ζ
(σ+ 2it)− 3

ζ′

ζ
(σ)

�

=
∞
∑

n=1

Λ(n)(4 cos(t log n) + cos(2t log n) + 3)
nσ

≥ 0,

qui est valide pour tout σ > 1,
Soit ρ0 = β0 + iγ0 un zéro non trivial de ζ(s). Si 1 < σ < 2, on a par le lemme 8.1

l’approximation suivante pour −ζ′/ζ (σ+ it),

−
ζ′

ζ
(σ+ it) = −

∑

ρ: | Im(s−ρ)|<1

1
s−ρ

+O(| log t|), (8.13)

et comme Re(s−ρ)> 0 pour tout zéro non trivial ρ, il suit que

Re
�

1
s−ρ

�

=
Re(s−ρ)
|s−ρ|2

> 0,

ce qui nous permet d’obtenir des estimations pour ζ′/ζ (σ+it) en simplement supprimant
des termes de la somme sur ρ en (8.13).

En supprimant tous les termes sauf ρ = ρ0, on obtient

Re
�

−
ζ′

ζ
(σ+ iγ0)

�

< −
1

σ− β0
+ c log |γ0| pour 1< σ < 2, (8.14)

pour une constante c > 0 suffisamment large. Supprimer tous les termes nous donne

Re
�

−
ζ′

ζ
(σ+ 2iγ0)

�

< c log |γ0| pour 1< σ < 2. (8.15)

Finalement, comme ζ′/ζ(s) a un pôle simple en s = 1, on a aussi

−
ζ′

ζ
(σ)<

1
σ− 1

+ c pour 1< σ < 2, (8.16)

si la constante c > 0 est choisie suffisamment large.
On groupant ces trois estimations et en utilisant (8.11), il suit que pour tout 1< σ2,

0≤ Re
�

−4
ζ′

ζ
(σ+ iγ0)−

ζ′

ζ
(σ+ 2iγ0)− 3

ζ′

ζ
(σ)

�

<
3

σ− 1
−

4
σ− β0

+ C log(γ0 + 2),
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pour une constante C > 0 suffisamment large. On utilise cette inégalité avec

σ = 1+
δ

log(γ0 + 2)
,

où δ > 0 est une constante positive, et après quelques transformations simples on obtient

β0 < 1+
δ

log(γ0 + 2)
−

4δ
(3+ Cδ) log(γ0 + 2)

.

Le théorème suit en posant δ = (3C)−1.

8.4 Preuve du théorème des nombres premiers

Ayant montré la formule explicite et disposant d’une zone de non-annulation sous la
forme du théorème 8.5, il est maintenant chose facile d’obtenir une formule asymptotique
pour ψ(x).

Théorème 8.6. Il existe une constante c > 0 telle que

ψ(x) = x +O
�

xe−c
p

log x
�

.

Preuve. On peut supposer que x ∈ N. Par le théorème 7.18, il suit que

∑

ρ: | Imρ|<T

1
|ρ|
�
∑

n≤T

log n
n
� (log T )2.

En utilisant cette borne et la zone de non-annulation montrée dans la section précédente,
il suit que

∑

ρ: | Imρ|<T

xρ

ρ
� x1− C

log T (log T )2.

En mettant cela dans la formule explicite et en observant que 〈x〉 ≥ 1, on obtient

ψ(x) = x +O
�

x1− C
log T (log T )2 +

x
T
(log x)2

�

,

et le théorème suit avec T = e
p

log x .

De ce résultat, on peut obtenir sans aucune peine une formule asymptotique pour π(x).
Avant de donner le résultat, on définit la fonction

Li(ξ) :=

∫ ξ

2

dξ
logξ

,

qui est connue comme le logarithme intégral.

Théorème 8.7 (Théorème des nombres premiers). Il existe une constante c > 0 telle que

π(x) = Li(x) +O
�

xe−c
p

log x
�

.
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Preuve. Par (4.1), on sait que

θ (x) = x +O
�

xe−c
p

log x
�

.

Par la formule sommatoire d’Abel, on a

π(x) =
θ (x)
log x

+

∫ x

3/2

θ (ξ)
(logξ)2ξ

dξ

=
x

log x
+

∫ x

3/2

1
(logξ)2

dξ+O

�

xe−c
p

log x +

∫ x

3/2

ξe−c
p

logξ

(logξ)2ξ
dξ

�

.

En ce qui concerne le terme principal, on utilise l’intégration par parties,

x
log x

+

∫ x

3/2

1
(logξ)2

dξ=
x

log x
+

�

−
ξ

logξ

�

�

�

�

x

3/2

+

∫ x

3/2

1
logξ

dξ

�

= Li(x) +O(1).

En ce qui concerne le terme d’erreur, on observe que la fonction ξ 7→ ξe−c
p

logξ est mo-
notone, et alors

∫ x

3/2

ξe−c
p

logξ

(logξ)2ξ
dξ� xe−c

p
log x

∫ ∞

3/2

1
(logξ)2ξ

dξ� xe−c
p

log x .

Cela conclut la preuve du théorème.

Notons que pour tout N ∈ N, on a l’approximation suivante pour le logarithme intégral,

Li(x) =
x

log x

N−1
∑

n=0

n!
(log x)n

+O
�

x
(log x)N

�

.

Par cette formule et le théorème 8.7, il suit aussi que

π(x)∼
x

log x
,

ce qui est le théorème des nombres premiers dans sa version le plus faible.
On pourrait améliorer le terme d’erreur, si on savait plus précisément où les zéros non

triviaux de ζ(s) se trouvent. Le résultat suivant précise cela.

Théorème 8.8. Soit 0≤ θ < 1. Si Reρ ≤ θ pour tous les zéros ρ de ζ(s), alors

ψ(x) = x +O
�

xθ (log x)2
�

.

À l’inverse, si ψ(x) = x +O
�

xθ
�

, alors Reρ ≤ θ pour tout zéros ρ de ζ(s).

Preuve. Si Reρ ≤ θ , alors |xρ| ≤ xθ , et comme avant on obtient

ψ(x) = x +O

�

xθ (log T )2 +
x(log x T )2

T
+ log x

�

,

et le premier énoncé suit avec T = x1−θ .
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Pour montrer le deuxième énoncé, on écrit la dérivée logarithmique de ζ(s) en sommant
par parties comme

−
ζ′

ζ
(s) = s

∫ ∞

1

ψ(ξ)ξ−s−1 dξ,

et en utilisant l’hypothèse,

−
ζ′

ζ
(s) =

s
s− 1

+ s

∫ ∞

1

R(ξ)
ξs+1

dξ,

où R(ξ) := ψ(ξ) − ξ. Comme R(ξ) � ξθ , l’intégrale à droite converge absolument
pour Re(s) > θ . Alors la seule singularité de ζ′/ζ (s) se trouve en s = 1, et par consé-
quent ζ(s) ne peut pas avoir de zéros ρ avec Reρ > θ .

Par la symétrie des zéros, le mieux est O
�

x
1
2

�

.

Théorème 8.9. L’hypothèse de Riemann est correcte si et seulement si

ψ(x) = x +O
�

x
1
2+ε
�

pour tout ε > 0.
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